题意:n个点m条边,最多可以删除m-k条边,使得剩下的边为构成原图的最短路树。
思路:dij之后跑一边dfs最短路树。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define forn(i,n) for(int i=0;i<n;i++)
#define for1(i,n) for(int i=1;i<=n;i++)
#define IO ios::sync_with_stdio(false);cin.tie(0)
const int maxn = 3e5+5;
const ll inf = 2e18+5;
#pragma GCC optimize(2)
int n,m,k;
struct node{
int w,id,p;
}nd[maxn];
ll d[maxn];
bool vis[maxn];
vector<node>e[maxn];
void dfs(int u){
vis[u] = 1;
for(auto &x:e[u]){
int v = x.p,id = x.id,w = x.w;
if(!vis[v]&&d[v]==d[u]+w){
if(!k) return;
cout<<id<<' ';
k--;
dfs(v);
}
}
}
int main(){
IO;
forn(i,maxn) d[i] = inf;
cin>>n>>m>>k;
for1(i,m){
int x,y,z;cin>>x>>y>>z;
e[x].push_back({z,i,y});
e[y].push_back({z,i,x});
}
priority_queue<pair<ll,int> > q;
q.push({0,1});
d[1] = 0;
while(!q.empty()){
auto now = q.top();q.pop();
int u = now.second;
if(vis[u]) continue;
vis[u] = 1;
for(auto &x:e[u])if(!vis[x.p]){
int v = x.p,w = x.w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
q.push({-d[v],v});
}
}
}
forn(i,maxn) vis[i] = 0;
cout<<min(n-1,k)<<'\n';
vector<int>ans;
dfs(1);
return 0;
}