数据结构总结(图)

  图这里存的就是复杂数据了,算法普遍较难,并有很多细节需要经常看。

本章主要内容有,图的逻辑结构,存储结构,连通性,最小生成树,最短路径,AOV,AOE 网等问题。

一,图的逻辑结构

图的部分知识在离散数学已经有所介绍,如有向图顶点度(入度=出度=边数),注意有向图连通也是任意俩点之间连通,不是无向图有边串连所有点的形式。

稀疏图:称边数很少的图为稀疏图;

稠密图:称边数很多的图为稠密图

连通分量:非连通图的极大连通子图称为连通分量。

生成树:n个顶点的连通图G的生成树是包含G全部顶点的一个极小连通子图。

eg:有7个顶点保证图在任何情况下都连通,最少要多少条边?

16条,6个点做完全图,一个点连上

   图的遍历有深度优先搜索(栈辅助)、广度优先搜索(队辅助)两种主要方式。

二,图的存储结构

1,邻接矩阵(数组表达法)

 关于顶点元素的集合一定用顺序存储。

注意无向图在构造邻接矩阵是对称的edge[i][j]=edge[j][i]=1;

DFS针对连通图的遍历
int visited[MaxSize];
template <class T>
void MGraph::DFSTraverse(int v){
     cout<<vertex[v]; visited [v]=1;//记录是否被访问过
     for (j=0; j<vertexNum; j++)
         if (arc[v][j]==1 && visited[j]==0)
            DFSTraverse( j );
}
///
BFS
int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){     
    front=rear=-1;
    cout<<vertex[v]; visited[v]=1;  Q[++rear]=v; 
    while (front!=rear)
     {
         v=Q[++front];   
         for (j=0; j<vertexNum; j++)
            if (arc[v][j]==1 && visited[j]==0 ) {
                  cout<<vertex[j];visited[j]=1;
                  Q[++rear]=j;
            }
      }
}

2,邻接表(出边表)

对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(对于有向图则称为出边表)

所有边表的头指针和存储顶点信息的一维数组构成了顶点表。

struct ArcNode{   
      int adjvex; 
      ArcNode *next;
};

template <class T>
struct VertexNode{
      T vertex;
      ArcNode *firstedge;//初始化时赋空
};
链表的DFS
template <class T>
void ALGraph::DFSTraverse(int v){        
    cout<<adjlist[v].vertex;  visited[v]=1;
    p=adjlist[v].firstedge;    
    while (p!=NULL)     {
        j=p->adjvex;
        if (visited[j]==0) DFSTraverse(j);
    p=p->next;           
    }
}


链表的BFS
template <class T>
void ALGraph::BFSTraverse(int v){
   front=rear=-1;   
   cout<<adjlist[v].vertex;    visited[v]=1;   Q[++rear]=v;   
   while (front!=rear)  {
       v=Q[++front];    p=adjlist[v].firstedge;    
       while (p!=NULL)  {
            j= p->adjvex;
            if (visited[j]==0) {
                cout<<adjlist[j].vertex;  visited[j]=1; Q[++rear]=j;
            }
            p=p->next;
       }
    }
}

3,图的其余存储方法还有有向图的十字链表法、无向图的邻接多重表、边集数组。

边集数组:对边依次进行处理时用、最小代价生成树

利用两个一维数组

一个数组存储顶点信息,
另外一个数组存储边及其权

数组分量包含三个域:边所依附的两个顶点,权值

三,最小生成树,连通所有点,权值最小

1,prim算法(加点法,适用稠密图)

int minedge(int lowcost[],int n){
    int m=100,p;
    for(int i=0;i<n;i++)
    if(lowcost[i]!=0&&m>lowcost[i]){
    m=lowcost[i];
    p=i;
    }
    return p;}
Void prime(MGraph G){
    for(int i=1;i<G.vertexNu;i++){     
        lowcost[i]=G.arc[0][i];  adjvex[i]=0;//从v0开始生成树,low cost记录与v0邻接边的权
    }
    lowcost[0]=0;
    for(i=1;i<G.vertexNum;i+++){
        k=MinEdge(lowcost,G.vertexNum)//找最小权
        cout<<K<<adjvex[k]<<lowcost[k];
        lowcost[k]=0;                  //将找到的点列入树中
              for(j=1;j<G.vertexNum;j++)
          if((G.arc[k][j]<lowcost[j]){
              lowcost[j]=G.arc[k][j];//更新关于树的结点权
              arcvex[j]=k;
           }
    }
}

2,kruskal算法(加边法,稀疏图)

使用边集数组,并查集,parent数组判断是否俩点属于同一个连通分量,不属于后一树的parent变前一树的值。

#include<bits/stdc++.h>
using namespace std;
struct bian                  //边集数组
{
    int from;
    int to;
    int weight;
};
bool cmp(bian a,bian b)           //使sort按权值排序
{
    return a.weight<b.weight;
}
int findd(int *parent,int o)     //找根结点
{
    int ff;
    ff=o;
    while(parent[ff]>-1)
        ff=parent[ff];
    return ff;
}
int main()
{
    int m,n;
    cin>>n>>m;
    int parent[99];
    int vis[99][99];
    bian eg[99];
    int f=0;
    for(int i=0; i<n; i++)
        parent[i]=-1;         //初始都是单个点,n个树
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
            vis[i][j]=0;      //都没访问过
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
        {
            int p;
            cin>>p;
            if(p!=0&&p!=100&&vis[i][j]==0)
            {
                eg[f].from=i;
                eg[f].to=j;
                eg[f].weight=p;
                vis[i][j]=1;           //无向图
                vis[j][i]=1;
                f++;
            }
        }
    sort(eg,eg+f,cmp);
    int k=0,beginn,endd,countt=0;
    for(k=0; k<f; k++)
    {
        beginn=eg[k].from;
        endd=eg[k].to;
        int x,y;
        x=findd(parent,beginn);
        y=findd(parent,endd);
        if(x!=y)
        {
            cout<<beginn+1<<" "<<endd+1<<" ";//输出结点
            parent[y]=x;
            countt++;
            if(countt==n-1)
                break;
        }
    }

}

四,最短路径

在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。

1,dijkstra算法(单元点到其他顶点的最短路径,不能解决负权问题)

路径长度递增,解n-1条路的数值

数组dist[n]每个分量dist[i]表示当前所找到的从始点v到终点vi的最短路径的长度。初态为:

  若从vvi有弧,则dist[i]为弧上权值;否则置dist[i]为∞

数组path[n]path[i]是一个字符串,表示当前所找到的从始点v到终点vi的最短路径。初态为:若从vvi有弧,则path[i]vvi;否则置path[i]空串。

数组s[n]存放源点和已经找到最短路径的终点,其初态为只有一个源点v

#include<iostream>
#include<string>
#include<cmath>
using namespace std;
const int MaxSize=10;
const int Max=1000;
class MGraph
{
public:
    MGraph(int n,int e);
    void Dijkstra(int v,int x);
private:
    int vertexnum;
    int arcnum;
    int arc[MaxSize][MaxSize];
    string vertex[MaxSize];
};
MGraph::MGraph(int n,int e){
    vertexnum=n;
    arcnum=e;
    for(int i=0;i<vertexnum;i++){       字符串与整形相结合存入vertex
        vertex[i]="v";
        vertex[i]+=(i+'0');
    }
    for(int i=0;i<vertexnum;i++)
        for(int j=0;j<vertexnum;j++)
        arc[i][j]=1000;

    int i,j,num;
    for(int k=0;k<arcnum;k++){
        cin>>i>>j>>num;
        arc[i][j]=num;
    }
}
void MGraph::Dijkstra(int v,int x){
    string s[Max];
    string path[Max];
    int dist[Max];
    for(int i=0;i<vertexnum;i++){
        s[i]="";              
        dist[i]=arc[v][i];               //存储相邻点的权值
        if(dist[i]!=Max)
            path[i]=vertex[v]+" "+vertex[i];   // 存储可能的路径
        else
            path[i]="";
    }
    s[v]=vertex[v];                  //存储每条最短最短路径的终点可写成s[0]=vertex[v];
    int num=1;
    while(num<vertexnum){
        int k=0;
        for(int i=0;i<vertexnum;i++)
            if(dist[i]<dist[k]&&s[i]=="") k=i;
        s[k]=vertex[k];                           //s[num++]=vetex[k];
        num++;
        for(int i=0;i<vertexnum;i++)
        if(dist[k]+arc[k][i]<dist[i]){
            dist[i]=dist[k]+arc[k][i];
            path[i]=path[k]+" "+vertex[i];
        }
    }
    if(path[x]!=""){
        cout<<dist[x]<<endl;
        cout<<path[x]<<endl;
    }
    else
        cout<<"no answer"<<endl;
}
int main()
{
    int n,e;
    int v,x;
    cin>>n>>e;
    cin>>v>>x;
    MGraph mg(n,e);
    mg.Dijkstra(v,x);
}

2,floyd算法(任意一对节点之间的最短路径)

邻接矩阵存储,迭代进行

#include<iostream>
#include<vector>
using namespace std;
  int path[99][99];
void judge(int x,int y)
{
     int k=path[x][y];
     if(k==-1) return;
	 judge(x,k);
	 cout<<"v"<<k<<" ";
	 judge(k,y);
}

int main(){
    int n,m,v,e;
    cin>>n>>m>>v>>e;
    int dist[99][99];


    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++){
        dist[i][j]=10000;
		path[i][j]=-1;}

    while(m--){
            int x,y,z;
        cin>>x>>y>>z;
    dist[x][y]=z;
    }

    for(int k=0;k<n;k++)
     for(int j=0;j<n;j++)
        for(int i=0;i<n;i++){
	if(k==j || k==i || i==j) continue;
        if(dist[i][k]+dist[k][j]<dist[i][j]){
            dist[i][j]=dist[i][k]+dist[k][j];
            path[i][j]=k;
        }}
	bool Flag=false;

         if(dist[v][e]!=10000)
		 {
			 Flag=true;
             cout<<dist[v][e]<<endl;
			 cout<<"v"<<v<<" ";
             judge(v,e);
			 cout<<"v"<<e<<" "<<endl;
		 }


   if(Flag==false)
   cout<<"no answer"<<endl;

}

五,有向无环图及其应用。

1,AOV网

在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。

拓扑序列(前驱后继关系都满足)

若从顶点vivj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前

拓扑排序:对一个有向图构造拓扑序列的过程称为拓扑排序

#include<bits/stdc++.h>
using namespace std;
struct bian{
    int hao;
bian *e;
};
struct dian{
int ru;
int  t;
bian *first;
};
int main(){
int v,a;
cin>>v>>a;
dian dd[v+1];
for(int i=1;i<=v;i++)          //边集数组,单存一个入度
{
    dd[i].ru=0;
    dd[i].t=i;
    dd[i].first=NULL;
}
for(int i=0;i<a;i++)
{
    int x,y;
    bian *s;
    cin>>x>>y;
    dd[y].ru++;
    s=new bian;
    s->hao=y;
    s->e=dd[x].first;
    dd[x].first=s;
}

stack<int>p;                 /用栈进行操作
for(int i=v;i>=1;i--)
    if(dd[i].ru==0)
    p.push(i);
while(!p.empty()){
    int j=p.top();
    p.pop();
    cout<<"v"<<dd[j].t<<" ";
   bian *q;
    q=dd[j].first;
    while(q!=NULL){
        int k=q->hao;
        dd[k].ru--;
        if(dd[k].ru==0)
            p.push(k);
        q=q->e;
    }
}



}

2,AOE网

在一个表示工程的带权有向图中,

用顶点表示事件,

用有向边表示活动,

边上的权值表示活动的持续时间,

称这样的有向图叫做边表示活动的网,简称AOE

AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

AOE网的性质:

⑴ 只有在某顶点所代表的事件发生后,从该顶点出发的各活动才能开始

⑵ 只有在进入某顶点的各活动都结束,该顶点所代表的事件才能发生

 

 

关键路径:AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。

关键活动:关键路径上的活动称为关键活动。

⑴ 事件的最早发生时间ve[k], 指从始点开始到顶点vk的最大路径长度。这个长度决定了所有从顶点vk发出的活动能够开工的最早时间。

⑵ 事件的最迟发生时间vl[k] ,指在不推迟整个工期的前提下,事件vk允许的最晚发生时间。

⑶ 活动的最早开始时间e[i]

⑷ 活动的最晚开始时间l[i]

#include<bits/stdc++.h>
using namespace std;
struct Edge{                       //构建边的结构体,表式边的俩点,边上事件的最早最晚发生时间
	int from;
	int to;
	int e;
	int l;
};
int ve[99];
int vl[99];

	int vertexnum;
	int adjlist[99][99];   
	int start,end;
	Edge edge[99];  

int main(){
    int v,a;
    int visit[99];
    cin>>v>>a;

    vertexnum=v;


    for(int i=1;i<=v;i++)
        for(int j=1;j<=v;j++)
        adjlist[i][j]=9999;
         for(int i=1;i<=a;i++){
        int x,y,z;
        cin>>x>>y>>z;
        adjlist[x][y]=z;
        edge[i].from=x;
        edge[i].to=y;

    }
    queue<int>q;
    q.push(1);//源点事件入队
	for(int j=1;j<=vertexnum;j++)	{  
		ve[j]=0;	visit[j]=0;	}
	visit[1]=1;
     while(!q.empty())	{
		int i=q.front();       
		q.pop();
		for(int j=1;j<=vertexnum;j++){//计算i的邻接点的ve
			if(adjlist[i][j]!=9999 && ve[i]+adjlist[i][j]>ve[j] ){
				ve[j]=ve[i]+adjlist[i][j];    //算最早,找大的
				if(!visit[j])   
					q.push(j);
				visit[j]=1;
			}
		}
	}
	//for(int i=1;i<=v;i++)
       // cout<<ve[i]<<" ";
    //cout<<endl;
/
      q.push(vertexnum);
	for(int j=1;j<=vertexnum;j++)	{
		vl[j]=ve[vertexnum];	visit[j]=0;	}
    while(!q.empty())	{
		int i=q.front();
		q.pop();
		for(int j=1;j<=vertexnum;j++)	{
			if(adjlist[j][i]!=9999 && vl[i]-adjlist[j][i]<vl[j] ){
				vl[j]=vl[i]-adjlist[j][i];
				if(!visit[j])
					q.push(j);
				visit[j]=1;
			}
		}
	}
	//for(int i=1;i<=v;i++)
      //  cout<<vl[i]<<" ";
    //cout<<endl;
	//

int f=0;
for(int i=1;i<=a;i++)
	{
		edge[i].e=ve[edge[i].from];      //根据节点算边,找相等的是关键路径
		edge[i].l=vl[edge[i].to]-adjlist[edge[i].from][edge[i].to];
		if(edge[i].e==edge[i].l){
                if(f==0){
			cout<<"v"<<edge[i].from<<" "<<"v"<<edge[i].to<<" ";
			f=1;}
			else
                cout<<"v"<<edge[i].to<<" ";
		}

	}
	cout<<endl;
/*for(int i=1;i<=a;i++)
	cout<<edge[i].e<<" ";
	cout<<endl;
	for(int i=1;i<=a;i++)
	cout<<edge[i].l<<" ";*/
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值