Leetcode刷题笔记(C++)——二分查找
整理一下刷题过程中的思路,在这里进行一下总结与分享。
github地址:https://github.com/lvjian0706/Leetcode-solutions
github项目是刚刚新建的,陆续会将整理的代码以及思路上传上去,代码是基于C++与python的。同时会将基础的排序算法等也一并进行整理上传。
4. 寻找两个正序数组的中位数
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
class Solution {
public:
/*
寻找两个数组第k小的元素
1. 当nums1为空时,返回nums2中第k小的元素;当nums2为空时,返回nums1中第k小的元素;
2. 当k==1时,nums1[0]和nums2[0]中的最小值为返回值;
3.1 如果nums1[k/2-1]<nums2[k/2-1],说明nums1[0:k/2-1]中不可能存在中位数, 更新nums1=nums1[k/2:]; 同时更新k-=2/k;反之亦然;
3.2 如果当前nums1的长度小于k/2-1,则将3.1中nums1[k/2-1]替换为nums[len1-1],保证数组不越界,更新nums1=nums1[len:](空数组),同时更新k-=此时nums1的长度;
*/
double findKth(vector<int>& nums1, vector<int>& nums2, int len1, int len2, int k){
int left1 = 0, left2 = 0;
while(true){
if(left1==len1){
return nums2[left2+k-1];
}
if(left2==len2){
return nums1[left1+k-1];
}
if(k==1){
return min(nums1[left1], nums2[left2]);
}
int new_left1 = min(left1+k/2-1, len1-1);
int new_left2 = min(left2+k/2-1, len2-1);
if(nums1[new_left1] <= nums2[new_left2]){
k -= new_left1 - left1 + 1;
left1 = new_left1 + 1;
}
else{
k -= new_left2 - left2 + 1;
left2 = new_left2 + 1;
}
}
}
/*
寻找两个正序数组的中位数,即找到两个数组合并后第(nums1.size()+nums2.size())/2小的元素
*/
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
/*
k = (nums1.size()+nums2.size())/2;
当nums1.size()+nums2.size()为奇数时,返回第k+1小的元素;
当nums1.size()+nums2.size()为偶数时,返回第k小的元素和第k+1小的元素均值;
*/
int len1 = nums1.size();
int len2 = nums2.size();
int k = (len1+len2)/2;
if((len1+len2)%2==0) return (findKth(nums1, nums2, len1, len2, k) + findKth(nums1, nums2, len1, len2, k+1)) / 2;
else return findKth(nums1, nums2, len1, len2, k+1);
}
};
33. 搜索旋转排序数组
假设按照升序排序的数组在预先未知的某个点上进行了旋转。( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。搜索一个给定的目标值,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。
你可以假设数组中不存在重复的元素。
你的算法时间复杂度必须是 O(log n) 级别。
示例 1:
输入: nums = [4,5,6,7,0,1,2], target = 0
输出: 4
示例 2:
输入: nums = [4,5,6,7,0,1,2], target = 3
输出: -1
class Solution {
public:
/*
有序数组查找目标值:二分查找
1. 需要将nums[mid]与nums[left]进行比较,判断旋转区间
2. 根据旋转区间范围以及target与nums[mid]的比较共同查找目标值
*/
int search(vector<int>& nums, int target) {
int left=0, right=nums.size()-1;
while(left<=right){
int mid = left + (right - left) / 2;
if(nums[mid]==target) return mid;
/*
只有一个元素且不等于target时,返回-1;
*/
else if(left==right){
return -1;
}
/*
nums[mid]大于nums[left]时,数组最小值在nums[mid]右边:
1. nums[mid]大于target时,需要根据target与nums[left]大小判断target所在区间
1.1 target大于nums[left]时,target位于nums[left:mid-1]
1.2 target小于nums[left]时,target位于nums[mid+1:]
2. nums[mid]小于target时,target位于nums[mid+1:]
*/
if(nums[mid]>nums[left]){
if(nums[mid]>target){
if(target>nums[left]) right = mid-1;
else if(target<nums[left]) left = mid+1;
else return left;
}
else if(nums[mid]<target){
left = mid+1;
}
}
/*
nums[mid]小于nums[left]时,数组最小值在nums[mid]左边:
1. nums[mid]小于target时,需要根据target与nums[left]大小判断target所在区间
1.1 target大于nums[left]时,target位于nums[left:mid-1]
1.2 target小于nums[left]时,target位于nums[mid+1:]
2. nums[mid]大于target时,target位于nums[left:mid-1]
*/
else if(nums[mid]<nums[left]){
if(nums[mid]<target){
if(target>nums[left]) right = mid-1;
else if(target<nums