利用tushare获取A股收盘价并画图

利用tushare获取A股收盘价,画时间轴折线图

带时间轴的折线图
做量化研究,没有数据可谓是巧妇难为无米之炊,而tushare为我们提供了非常给力的国内金融数据api。
自从推出pro版本之后,该平台的表现更加稳定。详细介绍请参照官网:https://tushare.pro/
下面在pycharm中演示如何利用tushare的通用行情接口获取A股数据,并画出带时间轴的折线图。

事实上获取数据非常方便,只需要3行代码:

import tushare as ts
api = ts.pro_api('your token')
df = ts.pro_bar(pro_api=api, ts_code='000001.SZ', adj='qfq', start_date='20180101', end_date='20181011')

接口具体输入参数如下:
来源:tushare官网
注意:通过ts.pro_bar()获得的是个股行情的Dataframe。以美的集团(000333.SZ

非常感谢您的问题,这是一个与金融数据分析相关的问题,我可以回答。但是请您注意,我的回答仅供参考,不构成任何投资建议。 首先,羊群效应是指投资者跟随大多数人的行为,导致市场出现过热或过冷的情况。在票市场上,羊群效应表现为投资者纷纷追涨杀跌,导致价波动过大。因此,我们可以根据羊群效应来构建选模型。 针对您的问题,我们可以使用Python和Tushare库来获取A市场的数据,根据羊群效应来筛选出一些票。具体步骤如下: 1. 获取票数据 使用Tushare获取A市场的票数据。可以获取票的日K线数据,包括开盘价、收盘价、最高价、最低价等。可以使用如下代码来获取数据: ```python import tushare as ts # 获取所有票的代码 stock_list = ts.get_stock_basics().index.tolist() # 获取票的日K线数据 df = ts.get_k_data('600000', start='2010-01-01', end='2022-01-01') ``` 2. 计算票涨跌幅 根据票的日K线数据,可以计算出每个交易日的涨跌幅。可以使用如下代码来计算: ```python df['pct_change'] = df['close'].pct_change() ``` 3. 计算市场平均涨跌幅 可以计算出A市场的平均涨跌幅,用于后续的筛选。可以使用如下代码来计算: ```python market_pct_change = df['pct_change'].mean() ``` 4. 筛选票 根据羊群效应,我们可以筛选出涨幅高于市场平均涨幅的票。可以使用如下代码来筛选: ```python selected_stocks = df[df['pct_change'] > market_pct_change]['code'].unique().tolist() ``` 5. 使用backtrader回溯 我们可以使用backtrader库来回溯选模型的表现。可以使用如下代码来回溯: ```python import backtrader as bt class MyStrategy(bt.Strategy): params = ( ('selected_stocks', []), ) def __init__(self): for code in self.params.selected_stocks: data = bt.feeds.PandasData(dataname=get_stock_data(code)) self.add_data(data) def next(self): for data in self.datas: if self.getposition(data).size == 0: self.buy(data, size=100) def run_strategy(selected_stocks): cerebro = bt.Cerebro() cerebro.addstrategy(MyStrategy, selected_stocks=selected_stocks) cerebro.run() def get_stock_data(code): df = ts.get_k_data(code, start='2010-01-01', end='2022-01-01') df = df.set_index('date') return df run_strategy(selected_stocks) ``` 6. 画出图形 使用backtrader库可以画出选模型的表现图形。可以使用如下代码来画图: ```python cerebro.plot() ``` 以上就是基于TUSHARE数据,用Python写一个应用行为金融学的羊群效应算法的选模型,用backtrader回溯,画出图形的步骤。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值