压缩感知(一):数学基础(稀疏、范数、符号argmin)

课题要用到压缩感知,越看越觉得坑越大,需要补充的基础知识越来越多。没办法,慢慢学习,慢慢记录吧。第一篇文章解决三个问题:稀疏、范数、argmin。

1、稀疏

关于稀疏信号的定义,这里给出4种形式:严格k稀疏信号,可压缩信号、稀疏基下的稀疏信号、稀疏基下的可压缩信号。

(1)严格 k k k稀疏信号:考虑一个有限长信号 x ∈ R n \boldsymbol{x}\in R_n xRn,如果 x \boldsymbol{x} x至多有 k k k个非零元素,即 ∥ x ∥ 0 ⩽ k \left\| \boldsymbol{x} \right\| _0\leqslant k x0k
则称信号 x \boldsymbol{x} x为严格 k k k稀疏信号。

(2)可压缩信号:如果信号可以用一个 k k k稀疏向量来近似表示,则称这样的信号为可压缩信号。

(3)稀疏基下的稀疏信号:大多数的情况下,信号本身不是稀疏的,但是在某些合适的基或变换下稀疏。

(4)稀疏基下的可压缩信号:给定值 k k k,信号 x \boldsymbol{x} x的最佳近似 k k k项元素的线性组合,称为 x \boldsymbol{x} x的最佳 k k k稀疏近似。

因为如果信号是稀疏的,则它是可压缩的。当然,现实中的信号本身一般并不是稀疏的,但经过一个变换后,在一组基上是稀疏的,这就是信号的稀疏表示。稀疏性是压缩感知的前提

2、向量范数

向量范数的定义为:
∥ x ∥ p = ( ∑ i = 1 N ∣ x i ∣ p ) 1 / p \left\| \boldsymbol{x} \right\| _p=\left( \sum_{i=1}^N{\left| x_i \right|^p} \right) ^{{{1}\Bigg/{p}}} xp=(i=1Nxip)1/p
0-范数:向量 x \boldsymbol{x} x中非零元素个数;
1-范数:向量 x \boldsymbol{x} x中所有元素绝对值之和:
∥ x ∥ 1 = ∑ i = 1 N ∣ x i ∣ \left\| \boldsymbol{x} \right\| _1=\sum_{i=1}^N{\left| x_i \right|} x1=i=1Nxi

2-范数:向量 x \boldsymbol{x} x的模长:
∥ x ∥ 2 = x 1 2 + x 2 2 + ⋯ + x N 2 \left\| \boldsymbol{x} \right\| _2=\sqrt{{x_1}^2+{x_2}^2+\cdots +{x_N}^2} x2=x12+x22++xN2
无穷范数:向量 x \boldsymbol{x} x所有元素的绝对值的最大值:
∥ x ∥ ∞ = max ⁡ 1 ⩽ i ⩽ N ∣ x i ∣ \left\| \boldsymbol{x} \right\| _{\infty}=\underset{1\leqslant i\leqslant N}{\max}\left| x_i \right| x=1iNmaxxi

负无穷范数:向量 x \boldsymbol{x} x所有元素的绝对值的最小值:
∥ x ∥ − ∞ = min ⁡ 1 ⩽ i ⩽ N ∣ x i ∣ \left\| \boldsymbol{x} \right\| _{-\infty}=\underset{1\leqslant i\leqslant N}{\min}\left| x_i \right| x=1iNminxi

3、矩阵范数

1-范数:又称列和范数,矩阵 A A A每一列元素绝对值之和的最大值:

∥ A ∥ 1 = max ⁡ 1 ⩽ j ⩽ N ∑ i = 1 N ∣ a i j ∣ \left\| A \right\| _1=\max_{1\leqslant j\leqslant N} \sum_{i=1}^N{\left| a_{ij} \right|} A1=1jNmaxi=1Naij
无穷范数:又称行和范数,矩阵 A A A每一行元素绝对值之和的最大值:
∥ A ∥ ∞ = max ⁡ 1 ⩽ i ⩽ M ∑ j = 1 N ∣ a i j ∣ \left\| A \right\| _{\infty}=\max_{1\leqslant i\leqslant M} \sum_{j=1}^N{\left| a_{ij} \right|} A=1iMmaxj=1Naij
2-范数:又称谱范数: ∥ A ∥ 2 = λ max ⁡ ( A T A ) \left\| A \right\| _2=\sqrt{\lambda _{\max}\left( A^TA \right)} A2=λmax(ATA)
F-范数:矩阵 A A A中所有元素平方和和算数平方根:
∥ A ∥ F = ∑ i = 1 M ∑ j = 1 N ∣ a i j ∣ 2 \left\| A \right\| _F=\sqrt{\sum_{i=1}^M{\sum_{j=1}^N{\left| a_{ij} \right|^2}}} AF=i=1Mj=1Naij2
F-范数的意义:使矩阵的每个元素分量接近于0。如果约束的是误差,就是使误差最小;如果约束的是拟合系数,则是使系数不容易过拟合。

4、argmin函数

argmin:使目标函数取最小值时的变量值;
argmax:使目标函数取最大值时的变量值。
【例1】 a r g max ⁡ x ( 1 − ∣ x ∣ ) = 0 \underset{x}{arg\max}\left( 1-\left| x \right| \right) =0 xargmax(1x)=0
【例2】 a r g max ⁡ x ∈ R ( x ( 10 − x ) ) = 5 \underset{x\in \mathbb{R}}{arg\max}\left( x\left( 10-x \right) \right) =5 xRargmax(x(10x))=5
【例3】 a r g max ⁡ x ∈ [ 0 , 4 π ] cos ⁡ x = { 0 , 2 π , 4 π } \underset{x\in \left[ 0,4\pi \right]}{arg\max}\cos x=\left\{ 0,2\pi ,4\pi \right\} x[0,4π]argmaxcosx={0,2π,4π}

5、压缩感知的数学描述

有了上述基础的数学知识,便可看懂压缩感知的数学描述:
x ^ = a r g min ⁡ ∥ x ∥ 0    s . t . y = Φ x \hat{\boldsymbol{x}}=arg\min \left\| \boldsymbol{x} \right\| _0\,\,\boldsymbol{s}.\boldsymbol{t}. \boldsymbol{y}=\varPhi \boldsymbol{x} x^=argminx0s.t.y=Φx

x ^ = a r g min ⁡ ∥ x ∥ 1    s . t . y = Φ x \hat{\boldsymbol{x}}=arg\min \left\| \boldsymbol{x} \right\| _1\,\,\boldsymbol{s}.\boldsymbol{t}. \boldsymbol{y}=\varPhi \boldsymbol{x} x^=argminx1s.t.y=Φx

或者:
min ⁡ ∥ Ψ T X ∥ 0    s . t . Φ Ψ T X = Y \min \left\| \boldsymbol{\varPsi }^T\boldsymbol{X} \right\| _0\,\, \boldsymbol{s}.\boldsymbol{t}. \boldsymbol{\varPhi \varPsi }^T\boldsymbol{X}=\boldsymbol{Y} min ΨTX 0s.t.ΦΨTX=Y

min ⁡ ∥ Ψ T X ∥ 1    s . t . Φ Ψ T X = Y \min \left\| \boldsymbol{\varPsi }^T\boldsymbol{X} \right\| _1\,\, \boldsymbol{s}.\boldsymbol{t}. \boldsymbol{\varPhi \varPsi }^T\boldsymbol{X}=\boldsymbol{Y} min ΨTX 1s.t.ΦΨTX=Y
不管是用min还是argmin,其实表达的意思都是一样的:
如果使用0-范数,表示求得满足后面约束条件的最稀疏的 x \boldsymbol{x} x
如果使用1-范数,表示求得满足后面约束条件的元素模值和最小的 x \boldsymbol{x} x
使用0-范数求解是一个NP难问题,在实际应用中,一般使用1-范数进行求解。两种求法在满足一定条件下(R.I.P)是等价的。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值