线性代数的本质(一)

本文为3blue1brown视频《线性代数的本质》的笔记。只记录了重要的内容,至于细节或者看不懂的地方,可以观看3blue1brown的视频。

1. 向量与空间

1.1 向量

1.1.1 向量定义

向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

向量表示空间中的一种运动关系,正负号表示运动方向。如向量 [ 1 − 2 ] \left[ \begin{array}{c} 1\\ -2\\ \end{array} \right] [12]表示在一个二维坐标系中,从原点出发,先沿 x x x轴正方向前进1,再沿 y y y轴负方向前进2,同理可以推导到多维空间。

1.1.2 向量加法

向量加法表示两次运动的叠加。如:
[ 1 2 ] + [ 3 4 ] = [ 1 + 3 2 + 4 ] = [ 4 6 ] \left[ \begin{array}{c} 1\\ 2\\ \end{array} \right] +\left[ \begin{array}{c} 3\\ 4\\ \end{array} \right] =\left[ \begin{array}{c} 1+3\\ 2+4\\ \end{array} \right] =\left[ \begin{array}{c} 4\\ 6\\ \end{array} \right] [12]+[34]=[1+32+4]=[46]
表示先按照第一个向量运动,再按照第二个向量运动。两个运动叠加的结果等同于在 x x x轴和 y y y轴总位移向量的运动结果。
因此可以得到向量加法的运算规则为:对应分量相加。

1.1.3 向量数乘

向量乘以数字表示运动的缩放。如:
3 [ 1 2 ] = [ 3 6 ] 3\left[ \begin{array}{c} 1\\ 2\\ \end{array} \right] =\left[ \begin{array}{c} 3\\ 6\\ \end{array} \right] 3[12]=[36]

表示把原来的向量运动扩大 3 3 3倍。

1.2 线性组合

向量数乘的和称为向量的线性组合。任何向量本质上都是由基向量缩放再相加得到的。例如:
v = [ x y z ] = x i + y j + z k \boldsymbol{v}=\left[ \begin{array}{c} x\\ y\\ z\\ \end{array} \right] =x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k} v= xyz =xi+yj+zk则向量 v \boldsymbol{v} v就是向量 i \boldsymbol{i} i j \boldsymbol{j} j k \boldsymbol{k} k分别缩放 x x x y y y z z z倍后相加的结果。
向量的线性组合
在这里插入图片描述
其中向量 i \boldsymbol{i} i j \boldsymbol{j} j k \boldsymbol{k} k被称为一组基向量。基向量实现了实数对与向量之间转化。当然,基向量的选取不同,表示的数字也不相同。

1.3 空间

给定向量线性组合得到的向量集合,称为给定向量张成(span)的空间。
对于向量 α = x i + y j \boldsymbol{\alpha }=x\boldsymbol{i}+y\boldsymbol{j} α=xi+yj,如果让两个标量 x x x y y y同时自由变化,大部分情况下,可以到达平面中的任意一点,而向量 i \boldsymbol{i} i j \boldsymbol{j} j张成的空间,就是一个二维平面空间。
当向量 i \boldsymbol{i} i j \boldsymbol{j} j共线时,所有向量都被限制在一条过原点的直线上,此时形成的就是一个一维直线空间。
当向量 i \boldsymbol{i} i j \boldsymbol{j} j都为零向量时,此时所有向量均被限制在原点。

1.4 线性相关与线性无关

一组向量中至少有一个是多余的,没有对张成空间做出任何贡献,或者说,移除一组向量中的某一个向量不会减小张成的空间,称它们是线性相关(Linearly dependent)的。
另一种表述是,其中一个向量可以表述为其他向量的线性组合。因为这个向量已经落在其他向量张成的空间之中,所以该向量没有对张成空间作出贡献。
在这里插入图片描述
如果所有的向量都给张成的空间添加了新的维度,则称他们是线性无关(Linearly independent)的。
在这里插入图片描述
上图中,对于任意的 a a a b b b,均不能使 u \boldsymbol{u} u落在 v \boldsymbol{v} v w \boldsymbol{w} w张成的空间中,即: u \boldsymbol{u} u增加了一个空间维度,因此 u \boldsymbol{u} u v \boldsymbol{v} v w \boldsymbol{w} w是线性无关的。
证明线性无关要说明 u ≠ a v + b w \boldsymbol{u}\ne a\boldsymbol{v}+b\boldsymbol{w} u=av+bw
对任意的 a a a b b b成立,因此常用反证法

1.5 基

向量空间的一组基是张成(span)该空间的一个线性无关向量集

如果空间中的一组向量是线性无关的,并且它们的任意线性组合都可以表示为空间里的一个向量,则这组向量称为该空间的

一个空间的基并不唯一,但它们的数量是唯一的,并且基向量的个数等于空间的维数。

在三维空间中,一组常见的基向量是:
i = [ 1 0 0 ] T j = [ 0 1 0 ] T k = [ 0 0 1 ] T \boldsymbol{i}=\left[ \begin{matrix} 1& 0& 0\\ \end{matrix} \right] ^T \\ \boldsymbol{j}=\left[ \begin{matrix} 0& 1& 0\\ \end{matrix} \right] ^T \\ \boldsymbol{k}=\left[ \begin{matrix} 0& 0& 1\\ \end{matrix} \right] ^T i=[100]Tj=[010]Tk=[001]T
三维空间里任意向量均可表示为这三个向量的线性组合。

2. 矩阵与线性变换

2.1 变换与线性变换

变换本质上是函数(function)的一种。线性代数里,变换通常指输入一个向量并输出一个向量的过程。
在这里插入图片描述
变换本质上是函数的一种,因此不存在一个向量映射到多个向量。
在这里插入图片描述
若一个变换 L \boldsymbol{L} L满足下面两条性质:
L ( u ± v ) = L ( u ) ± L ( v ) L ( k u ) = k L ( u ) \begin{aligned} \boldsymbol{L}\left( \boldsymbol{u}\pm \boldsymbol{v} \right) &=\boldsymbol{L}\left( \boldsymbol{u} \right) \pm \boldsymbol{L}\left( \boldsymbol{v} \right) \\ \boldsymbol{L}\left( k\boldsymbol{u} \right) &=k\boldsymbol{L}\left( \boldsymbol{u} \right) \end{aligned} L(u±v)L(ku)=L(u)±L(v)=kL(u)

则称 L \boldsymbol{L} L是线性的。
直观来讲,线性变换就是,任意直线变换后还是直线,并且原点位置固定不变。
线性变换保持网格线平行且等距

2.2 矩阵向量乘法与线性变换

了解了线性变换,一个自然而然的问题便是,如何描述一个线性变换?

对于向量 v = [ − 1 2 ] T \boldsymbol{v}=\left[ \begin{matrix} -1& 2\\ \end{matrix} \right] ^T v=[12]T,可以将其写成向量线性组合的形式:
v = − 1 i + 2 j \boldsymbol{v}=-1\boldsymbol{i}+2\boldsymbol{j} v=1i+2j

其中 i \boldsymbol{i} i j \boldsymbol{j} j为基向量。
在这里插入图片描述
经过某种变换后,可以得到下图。其中蓝色网格线为变换后的基坐标表示。
123
线性变换的一个重要推论就是:线性变换不改变基向量的线性组合方式
变换前,向量 v \boldsymbol{v} v(黄色箭头)可以表示为:
v = − 1 i + 2 j \boldsymbol{v}=-1\boldsymbol{i}+2\boldsymbol{j} v=1i+2j

那么变换后的向量 v ′ \boldsymbol{v}\prime v可以表示为:
v ′ = − 1 i ′ + 2 j ′ \boldsymbol{v}\prime=-1\boldsymbol{i}\prime+2\boldsymbol{j}\prime v=1i+2j

其中 i ′ \boldsymbol{i}\prime i j ′ \boldsymbol{j}\prime j为变换后的基向量(蓝色网格)。
可见两者的线性组合方式相同。

经过变换后的向量 i ′ \boldsymbol{i}\prime i与向量 j ′ \boldsymbol{j}\prime j,分别是 [ 1 − 2 ] T \left[ \begin{matrix} 1& -2\\ \end{matrix} \right]^T [12]T [ 3 0 ] T \left[ \begin{matrix} 3& 0\\ \end{matrix} \right] ^T [30]T,经过计算,向量 v ′ \boldsymbol{v}\prime v一定落在向量 ( 5 , 2 ) \left( 5,2 \right) (5,2)上。
在这里插入图片描述
事实上,只要知道变换后的向量 i ′ \boldsymbol{i}\prime i j ′ \boldsymbol{j}\prime j,就可以推断任意向量在变换之后的位置。例如,对于原坐标为 ( x , y ) \left( x,y \right) (x,y)的任意向量,就有
[ x y ] → x i ′ + y j ′ = x [ 1 − 2 ] + y [ 3 0 ] = [ x + 3 y − 2 x ] \left[ \begin{array}{c} x\\ y\\ \end{array} \right] \rightarrow x\boldsymbol{i}\prime+y\boldsymbol{j}\prime=x\left[ \begin{array}{c} 1\\ -2\\ \end{array} \right] +y\left[ \begin{array}{c} 3\\ 0\\ \end{array} \right] =\left[ \begin{array}{c} x+3y\\ -2x\\ \end{array} \right] [xy]xi+yj=x[12]+y[30]=[x+3y2x]

由此可见,一个二维的线性变换仅由四个数字完全确定,即变换后的向量 i ′ \boldsymbol{i}\prime i j ′ \boldsymbol{j}\prime j
而如果将向量 i ′ \boldsymbol{i}\prime i j ′ \boldsymbol{j}\prime j放到一个 2 × 2 2\times 2 2×2的格子里,便会得到一个 2 × 2 2\times 2 2×2的矩阵,这便是变换矩阵

一般情况下,给定任意 2 × 2 2\times 2 2×2矩阵 A \boldsymbol{A} A
[ a b c d ] \left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] [acbd]

它的两个列向量可以认为是向量 i \boldsymbol{i} i j \boldsymbol{j} j经过某一变换 L \boldsymbol{L} L得到的。给定任意向量 [ x y ] T \left[ \begin{matrix} x& y\\ \end{matrix} \right] ^T [xy]T经过变换 L \boldsymbol{L} L后得到的向量可以表示为:
[ a b c d ] [ x y ] = [ a x + b y c x + d y ] \left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] \left[ \begin{array}{c} x\\ y\\ \end{array} \right] =\left[ \begin{array}{c} ax+by\\ cx+dy\\ \end{array} \right] [acbd][xy]=[ax+bycx+dy]

即矩阵 A \boldsymbol{A} A乘向量 [ x y ] T \left[ \begin{matrix} x& y\\ \end{matrix} \right] ^T [xy]T的结果。

实际上,完全可以把矩阵的列向量看作是变换后的基向量,矩阵向量的乘法就是矩阵列向量缩放再相加的过程。因此,一个矩阵其实就是代表了一种线性变换矩阵实际上就是变换后基向量的组合,而矩阵向量乘法就是计算线性变换作用于给定向量的一种途径

2.2.1 旋转变换

如果将空间逆时针旋转90°,则基向量 i \boldsymbol{i} i j \boldsymbol{j} j分别落在 ( 0 , 1 ) \left( 0,1 \right) (0,1) ( − 1 , 0 ) \left( -1,0 \right) (1,0),因此这个变换矩阵 A \boldsymbol{A} A可以写成:
[ 0 − 1 1 0 ] \left[ \begin{matrix} 0& -1\\ 1& 0\\ \end{matrix} \right] [0110]想要算出任意向量逆时针旋转90°后的位置,只需将它左乘旋转矩阵即可。
在这里插入图片描述

2.2.2 剪切变换

如果让向量 i \boldsymbol{i} i保持不变,将 j \boldsymbol{j} j的坐标移到 ( 1 , 1 ) \left( 1,1 \right) (1,1)上,得到的变换称为剪切变换。该剪切矩阵可以表示为:
[ 1 1 0 1 ] \left[ \begin{matrix} 1& 1\\ 0& 1\\ \end{matrix} \right] [1011]同样地,想要算出任意向量经过剪切变换后的位置,只需将它左乘剪切矩阵即可。
在这里插入图片描述

2.3 矩阵乘法与线性变换复合

在一个线性变换之后再进行另一个线性变换,该过程称为前两个独立变换的复合变换
例如,对一个向量 [ x y ] T \left[ \begin{matrix} x& y\\ \end{matrix} \right] ^T [xy]T先进行旋转变换 [ 0 − 1 1 0 ] \left[ \begin{matrix} 0& -1\\ 1& 0\\ \end{matrix} \right] [0110],再进行剪切变换 [ 1 1 0 1 ] \left[ \begin{matrix} 1& 1\\ 0& 1\\ \end{matrix} \right] [1011],可以得到:
[ 1 1 0 1 ] [ 0 − 1 1 0 ] [ x y ] = [ 1 − 1 1 0 ] [ x y ] \left[ \begin{matrix} 1& 1\\ 0& 1\\ \end{matrix} \right] \left[ \begin{matrix} 0& -1\\ 1& 0\\ \end{matrix} \right] \left[ \begin{array}{c} x\\ y\\ \end{array} \right] =\left[ \begin{matrix} 1& -1\\ 1& 0\\ \end{matrix} \right] \left[ \begin{array}{c} x\\ y\\ \end{array} \right] [1011][0110][xy]=[1110][xy]复合矩阵 [ 1 − 1 1 0 ] \left[ \begin{matrix} 1& -1\\ 1& 0\\ \end{matrix} \right] [1110]为前两个矩阵相乘地结果。因此两个矩阵相乘的几何意义就是两个线性变换的相继作用
在这里插入图片描述
如果将矩阵 A = [ a b c d ] \boldsymbol{A}=\left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] A=[acbd]视为一种线性变换,矩阵 B = [ e f g h ] \boldsymbol{B}=\left[ \begin{matrix} \boldsymbol{e}& f\\ g& h\\ \end{matrix} \right] B=[egfh]视为另一种线性变换,若对向量先进行 B \boldsymbol{B} B变换在进行 A \boldsymbol{A} A变换,则这一过程可表示为:
A B v = [ a b c d ] [ e f g h ] [ x y ] \boldsymbol{ABv}=\left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] \left[ \begin{matrix} e& f\\ g& h\\ \end{matrix} \right] \left[ \begin{array}{c} x\\ y\\ \end{array} \right] ABv=[acbd][egfh][xy]前面提到过,可以把矩阵的列向量看作是变换后的基向量。若只考虑上面的矩阵 A \boldsymbol{A} A B \boldsymbol{B} B,把矩阵 B \boldsymbol{B} B的列向量看作是经过 B \boldsymbol{B} B变换后的基向量,然后再进行 A \boldsymbol{A} A变换,也就是分别对向量 [ e g ] T \left[ \begin{matrix} e& g\\ \end{matrix} \right] ^T [eg]T [ f h ] T \left[ \begin{matrix} f& h\\ \end{matrix} \right] ^T [fh]T进行 A \boldsymbol{A} A变换:
[ a b c d ] [ e g ] = e [ a c ] + g [ b d ] = [ a e + b g c e + d g ]    [ a b c d ] [ f h ] = f [ a c ] + h [ b d ] = [ a f + b h c f + d h ] \left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] \left[ \begin{array}{c} e\\ g\\ \end{array} \right] =e\left[ \begin{array}{c} a\\ c\\ \end{array} \right] +g\left[ \begin{array}{c} b\\ d\\ \end{array} \right] =\left[ \begin{array}{c} ae+bg\\ ce+dg\\ \end{array} \right] \\ \ \ \\ \left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] \left[ \begin{array}{c} f\\ h\\ \end{array} \right] =f\left[ \begin{array}{c} a\\ c\\ \end{array} \right] +h\left[ \begin{array}{c} b\\ d\\ \end{array} \right] =\left[ \begin{array}{c} af+bh\\ cf+dh\\ \end{array} \right] [acbd][eg]=e[ac]+g[bd]=[ae+bgce+dg]  [acbd][fh]=f[ac]+h[bd]=[af+bhcf+dh]于是,我们便得到了矩阵乘法的运算公式:
[ a b c d ] [ e f g h ] = [ a e + b g a f + b h c e + d g c f + d h ] \left[ \begin{matrix} a& b\\ c& d\\ \end{matrix} \right] \left[ \begin{matrix} e& f\\ g& h\\ \end{matrix} \right] =\left[ \begin{matrix} ae+bg& af+bh\\ ce+dg& cf+dh\\ \end{matrix} \right] [acbd][egfh]=[ae+bgce+dgaf+bhcf+dh]
同样地,该结果可以认为是矩阵 A \boldsymbol{A} A的列向量 [ a c ] T \left[ \begin{matrix} a& c\\ \end{matrix} \right] ^T [ac]T [ b d ] T \left[ \begin{matrix} b& d\\ \end{matrix} \right] ^T [bd]T分别缩放 e e e g g g倍和 f f f h h h倍后再相加,即 A \boldsymbol{A} A的列向量的线性组合。
矩阵乘法的实质是两种线性变换相继作用的结果,两种变换的先后顺序会导致变换结果不相同,因此通常情况下:
A B ≠ B A \boldsymbol{AB}\ne \boldsymbol{BA} AB=BA
在这里插入图片描述
在这里插入图片描述
上面两张图可以看出,先剪切再旋转与先旋转再剪切得到的结果是不同的。

2.4 三维空间的线性变换

三维空间的线性变换与二维空间的类似,缩放再相加的过程仍适用。例如矩阵与向量相乘,要找到向量变换后的位置,只需将它的坐标与对应列向量相乘再将结果相加即可。
在这里插入图片描述
两个矩阵相乘也是类似。例如两个 3 × 3 3\times 3 3×3的矩阵相乘,可以把右侧矩阵的列向量看作经过第一个变换后的基向量,然后分别对三个基向量进行第二个变换。
在这里插入图片描述

2.5 行列式

变换矩阵 A \boldsymbol{A} A将空间 X \boldsymbol{X} X变换为空间 Y \boldsymbol{Y} Y,则空间中的任意区域将被拉伸或者放缩,任意区域变换后得到的区域的面积(二维)或者体积(三维),与变换前的面积或体积的比值称为变换矩阵 A \boldsymbol{A} A的行列式,记为 det ⁡ ( A ) \det \left( \boldsymbol{A} \right) det(A)
在这里插入图片描述
在这里插入图片描述

  • det ⁡ ( A ) = 0 \det \left( \boldsymbol{A} \right) =0 det(A)=0时, A \boldsymbol{A} A变换是降维变换,将空间压缩到更小的维度,比如三维空间的体积变换成面、线或点;二维空间的面积变换成点或线。此时,矩阵 A \boldsymbol{A} A的列向量线性相关。
  • det ⁡ ( A ) > 0 \det \left( \boldsymbol{A} \right) >0 det(A)>0时,经过 A \boldsymbol{A} A变换后,空间未发生翻转或者空间定向没有发生改变,或者说,基向量的相对位置没有发生改变。
  • det ⁡ ( A ) < 0 \det \left( \boldsymbol{A} \right) <0 det(A)<0时,空间发生翻转或者空间定向发生变化(基向量的相对位置发生变化),但行列式的绝对值仍是变换前后面积或体积的比值。

行列式正负的判断,看基向量的相对位置。
对于二维空间,若向量 i \boldsymbol{i} i在向量 j \boldsymbol{j} j的右侧,则基向量的相对位置没有发生改变。否则,则说明空间定向发生变化,行列式小于零。
在这里插入图片描述
对于三维空间,采用右手定则判断。右手食指指向向量 i \boldsymbol{i} i的方向,伸出中指指向向量 j \boldsymbol{j} j的方向,当竖起大拇指时,拇指指向的就是向量 k \boldsymbol{k} k的方向。若不满足这种情况,则说明空间定向发生变化, det ⁡ ( A ) < 0 \det \left( \boldsymbol{A} \right) <0 det(A)<0
在这里插入图片描述

参考文献

  1. UP主汉语配音-【线性代数的本质】合集-转载于3Blue1Brown官方双语】
  2. 【熟肉】线性代数的本质 - 01 - 向量究竟是什么?
  3. 线性代数的本质(完整版)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值