【python】读取excel的行列内容,pandas,超详细!!!

使用python处理excel的内容时,第一步当然是读取excel的内容。

import  pandas  as pd
#1:读取指定行
print("----读取指定的单行,数据会存在列表里面----")
df=pd.read_excel('测试.xlsx')#这个会直接默认读取到这个Excel的第一个表单
data=df.loc[0].values#0表示第一行 这里读取数据并不包含表头,要注意哦!
print("读取指定行的数据:\n{0}".format(data))

print("\n------读取指定的多行,数据会存在嵌套的列表里面----------")
df=pd.read_excel('测试.xlsx')
data=df.loc[[1,2]].values#读取指定多行的话,就要在loc[]里面嵌套列表指定行数
print("读取指定行的数据:\n{0}".format(data))

print("\n----------------读取指定的行列-----------------------")
df=pd.read_excel('测试.xlsx')
data=df.iloc[1,2]#读取第一行第二列的值,这里不需要嵌套列表
print("读取指定行的数据:\n{0}".format(data))

print("\n----------------读取指定的多行多列值-----------------------")
df=pd.read_excel('测试.xlsx')
data=df.loc[[1,2],['title','data']].values#读取第一行第二行的title以及data列的值,这里需要嵌套列表
print("读取指定行的数据:\n{0}".format(data))

print("\n-----------获取所有行的指定列----------------------------")
df=pd.read_excel('测试.xlsx')
data=df.loc[:,['title','data']].values#读所有行的title以及data列的值,这里需要嵌套列表
print("读取指定行的数据:\n{0}".format(data))

print("\n------------获取行号并打印输出---------------------------")
df=pd.read_excel('测试.xlsx')
print("输出行号列表",df.index.values)

print("\n-------------获取列名并打印输出--------------------------")
df=pd.read_excel('测试.xlsx')
print("输出列标题",df.columns.values)

print("\n------------获取指定行数的值---------------------------")
df=pd.read_excel('测试.xlsx')

print("输出值",df.sample(3).values)#这个方法类似于head()方法以及df.values方法
print("\n-----------获取指定列的值----------------------------")
df=pd.read_excel('测试.xlsx')
print("输出值\n",df['data'].values)

 

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值