问题提出:矩阵存储压缩
分析:尽可能地压缩数据量;压缩后仍然可以比较容易地进行各项基本操作.
两类矩阵的压缩存储:特殊矩阵;稀疏矩阵.
稀疏矩阵的压缩存储思想:
-存储非零元:值;位置(行列号)
-存储适当的辅助信息:行数;列数;非零元的个数
三元组<i,j,e>
| 0 | 12 | 9 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -3 | 0 | 0 | 0 | 0 | 14 | 0 |
| 0 | 0 | 24 | 0 | 0 | 0 | 0 |
| 0 | 18 | 0 | 0 | 0 | 0 | 0 |
| 15 | 0 | 0 | -7 | 0 | 0 | 0 |
一、三元组顺序表
例1:稀疏矩阵得压缩存储(按行列号由小到大的有序表)
行号:1到6 列号:1到7
| i | j | e |
|---|---|---|
| 1 | 2 | 12 |
| 1 | 3 | 9 |
| 3 | 1 | -3 |
| 3 | 6 | 14 |
| 4 | 3 | 24 |
| 5 | 2 | 18 |
| 6 | 1 | 15 |
| 6 | 4 | -7 |
mu=6,nu=7,tu=8
//稀疏矩阵的三元顺序表存储(静态分配)表示
#define MAXSIZE 100//<非零元素个数的最大值>
typedef struct{
int i,j;
ElemType e;
}Triple;
typedef struct{
Triple data{MAXSIZE+1};
int mu,nu,tu;
}TSMatrix;
1.建立:Status CreatSMatrix(TSMatrix &M)
2.输出:void OutputSMatrix(TSMatrix &M)
| 0 | 12 | 9 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -3 | 0 | 0 | 0 | 0 | 14 | 0 |
| 0 | 0 | 24 | 0 | 0 | 0 |

本文探讨了稀疏矩阵的压缩存储方法,包括三元组顺序表和行逻辑链接的顺序表,以及如何实现转置和乘积运算。通过存储非零元素的位置和值,有效地减少了数据占用空间。对于转置,提出了快速转置算法,优化了时间复杂度。此外,还介绍了用于快速访问的rpos数组,以支持高效的操作。
最低0.47元/天 解锁文章
704

被折叠的 条评论
为什么被折叠?



