数据结构:稀疏矩阵的压缩存储

本文探讨了稀疏矩阵的压缩存储方法,包括三元组顺序表和行逻辑链接的顺序表,以及如何实现转置和乘积运算。通过存储非零元素的位置和值,有效地减少了数据占用空间。对于转置,提出了快速转置算法,优化了时间复杂度。此外,还介绍了用于快速访问的rpos数组,以支持高效的操作。
摘要由CSDN通过智能技术生成

问题提出:矩阵存储压缩
分析:尽可能地压缩数据量;压缩后仍然可以比较容易地进行各项基本操作.
两类矩阵的压缩存储:特殊矩阵;稀疏矩阵.
稀疏矩阵的压缩存储思想:
-存储非零元:值;位置(行列号)
-存储适当的辅助信息:行数;列数;非零元的个数
三元组<i,j,e>

0 12 9 0 0 0 0
0 0 0 0 0 0 0
-3 0 0 0 0 14 0
0 0 24 0 0 0 0
0 18 0 0 0 0 0
15 0 0 -7 0 0 0

一、三元组顺序表
例1:稀疏矩阵得压缩存储(按行列号由小到大的有序表)
行号:1到6 列号:1到7

i j e
1 2 12
1 3 9
3 1 -3
3 6 14
4 3 24
5 2 18
6 1 15
6 4 -7

mu=6,nu=7,tu=8
//稀疏矩阵的三元顺序表存储(静态分配)表示

#define MAXSIZE 100//<非零元素个数的最大值>
typedef struct{
	int i,j;
	ElemType e;
}Triple;
typedef struct{
	Triple data{MAXSIZE+1};
	int mu,nu,tu;
}TSMatrix;

1.建立:Status CreatSMatrix(TSMatrix &M)
2.输出:void OutputSMatrix(TSMatrix &M)

0 12 9 0 0 0 0
0 0 0 0 0 0 0
-3 0 0 0 0 14 0
0 0 24 0 0 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值