谈谈傅里叶级数和傅里叶变换

谈谈傅里叶级数和傅里叶变换

前言

​ 作为工科大学生,相信很多人都避免不了要学习傅里叶变换和傅里叶级数,我是属于每次用到都查询资料代入公式,所以对于它的理解只停留在了科普层面,没有真正理解其中奥秘,所以决心用一篇文章让自己记忆深刻。

​ 首先举个例子,从简单讲一讲这个让人又爱又恨的傅里叶级数。我们想象一个能够将污水里面各种成分都分别过滤的净水器,这里的污水就是我们平时用到的信号,而净水器则是我们的傅里叶变换。

​ 如果你生活在农村,那么下面这张图片应该更能说明问题,这个木制的谷风车就是我们的傅里叶变换或者傅里叶级数展开,而这里信号的各种成分是相对于信号的不同频率而言的。

在这里插入图片描述


一、正交函数集

​ 要学习傅里叶级数,首先就要搞清楚什么叫做正交函数集,因为我们在对周期信号进行傅里叶级数展开时,我们通常是将它变成正交函数的和式。那么我们先来复习一下向量的正交。

在这里插入图片描述

下面我们令两个向量的坐标分别为a(0,1,1),b(1,0,0)

那么这两个向量的点积计算过程为 0×1+1×0+1×0=0。

我们继续假设有这样两个向量相互正交

a ⃗ = { a 1 , a 2 , ⋯   , a n } \vec{a}=\lbrace a_1,a_2,\cdots,a_n\rbrace a ={a1,a2,,an}, b ⃗ = { b 1 , b 2 , ⋯   , b n } \vec{b}=\lbrace b_1,b_2,\cdots,b_n\rbrace b ={b1,b2,,bn},则有

∑ n = 1 ∞ a n ⋅ b n = 0 \sum\limits_{n=1}^\infin a_n\cdot b_n=0 n=1anbn=0

这样一个式子看起来是不是很像两个数列,我们知道数列就是数轴上离散的点,把这些离散的点连接起来,就得到了正交函数的定义,同时也是我们在后面要用到的一条重要性质。

∫ − ∞ + ∞ f ( x ) ⋅ g ( x ) d x = 0 \int_{-\infin}^{+\infin}f(x)\cdot g(x)dx=0 +f(x)g(x)dx=0


总结

通常,我们对周期函数进行傅里叶展开时我们使用的正交函数集为三角函数集,即:

{ 0 , 1 , s i n x , c o s x , s i n 2 x , c o s 2 x , ⋯   , s i n ( n x ) , c o s ( n x ) } \lbrace0,1,sinx,cosx,sin2x,cos2x,\cdots,sin(nx),cos(nx)\rbrace {0,1,sinx,cosx,sin2x,cos2x,,sin(nx),cos(nx)}

至于三角函数的正交性,可以用积化和差公式进行推导,此处不做详细证明。

二、周期函数的傅里叶级数

1、周期为 2 π 2\pi 2π的情况

​ 按照前面所说,我们把周期函数展开成正交函数的和,而正交函数集我们采用三角函数的话,我们就可以把一个周期函数表示成为另外一种形式,如下:
f ( t ) = ∑ n = 0 ∞ a n c o s ( n t ) + ∑ n = 0 ∞ b n s i n ( n t ) f(t)=\sum\limits_{n=0}^\infin a_ncos(nt)+\sum\limits_{n=0}^\infin b_nsin(nt) f(t)=n=0ancos(nt)+n=0bnsin(nt)
多数教科书是下面这种形式
f ( t ) = a 0 2 + ∑ n = 1 ∞ a n c o s ( n t ) + ∑ n = 1 ∞ b n s i n ( n t ) f(t)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infin}{a_ncos(nt)+\sum\limits_{n=1}^\infin b_nsin(nt)} f(t)=2a0+n=1ancos(nt)+n=1bnsin(nt)
接下来我们来分析这两种形式的区别以及这其中的三个参数的求法。

求解 a 0 a_0 a0

f ( t ) = a 0 c o s 0 t + b 0 s i n 0 t + ∑ n = 1 ∞ a n c o s ( n t ) + ∑ n = 1 ∞ b n s i n ( n t ) f(t)=a_0cos0t+b_0sin0t+\sum\limits_{n=1}^\infin a_ncos(nt)+\sum\limits_{n=1}^\infin b_nsin(nt) f(t)=a0cos0t+b0sin0t+n=1ancos(nt)+n=1bnsin(nt)

f ( t ) = a 0 + ∑ n = 1 ∞ a n c o s n t + ∑ n = 1 ∞ b n s i n ( n t ) f(t)=a_0+\sum\limits_{n=1}^\infin a_ncosnt+\sum\limits_{n=1}^\infin b_nsin(nt) f(t)=a0+n=1ancosnt+n=1bnsin(nt) (2-1)

我们对该式的左右两边同时积分,得

∫ − π π f ( t ) d t = ∫ − π π a 0 d t + ∑ n = 1 ∞ a n ∫ − π π c o s ( n t ) d t + ∑ n = 1 ∞ b n ∫ − π π s i n ( n t ) d t \int_{-\pi}^{\pi}f(t)dt=\int_{-\pi}^{\pi}a_0dt+\sum\limits_{n=1}^\infin a_n\int_{-\pi}^{\pi}cos(nt)dt+\sum\limits_{n=1}^\infin b_n\int_{-\pi}^{\pi} sin(nt)dt ππf(t)dt=ππa0dt+n=1anππcos(nt)dt+n=1bnππsin(nt)dt

∫ − π π f ( t ) d t = 2 π a 0 \int_{-\pi}^{\pi}f(t)dt=2\pi a_0 ππf(t)dt=2πa0

a 0 = 1 2 π ∫ − π π f ( t ) d t a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)dt a0=2π1ππf(t)dt

接下来我们令, a 0 = a 0 2 a_0=\frac{a_0}{2} a0=2a0,这时我们就能够得到教科书上面的形式,且

a 0 = 1 π ∫ − π π f ( t ) d t a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)dt a0=π1ππf(t)dt (2-2)

求解 a n a_n an

我们对式2-1的左右两边同时乘以 c o s ( n t ) cos(nt) cos(nt),再对式子左右两边同时积分,得

∫ − π + π f ( t ) ⋅ c o s ( n t ) d t = a 0 ∫ − π + π c o s ( n t ) d t + ∑ n = 1 ∞ a n ∫ − π + π c o s 2 ( n t ) d t + ∑ n = 1 ∞ b n ∫ − π π s i n ( n t ) ⋅ c o s ( n t ) d t \int_{-\pi}^{+\pi}f(t)\cdot cos(nt)dt=a_0\int_{-\pi}^{+\pi}cos(nt)dt+\sum\limits_{n=1}^{\infin}a_n\int_{-\pi}^{+\pi}cos^2(nt)dt+\sum\limits_{n=1}^{\infin}b_n\int_{-\pi}^{\pi}sin(nt)\cdot cos(nt)dt π+πf(t)cos(nt)dt=a0π+πcos(nt)dt+n=1anπ+πcos2(nt)dt+n=1bnππsin(nt)cos(nt)dt

∵ a 0 ∫ − π π c o s ( n t ) d t = 0 \because a_0\int_{-\pi}^{\pi}cos(nt)dt=0 a0ππcos(nt)dt=0, ∑ n = 1 ∞ b n ∫ − π π s i n ( n t ) ⋅ c o s ( n t ) d t = 0 \sum\limits_{n=1}^{\infin}b_n\int_{-\pi}^{\pi}sin(nt)\cdot cos(nt)dt=0 n=1bnππsin(nt)cos(nt)dt=0

∴ ∫ − π + π f ( t ) ⋅ c o s ( n t ) d t = ∑ n = 1 ∞ a n ∫ − π π c o s 2 ( n t ) d t = π ∑ n = 1 ∞ a n \therefore \int_{-\pi}^{+\pi}f(t)\cdot cos(nt)dt=\sum\limits_{n=1}^{\infin}a_n\int_{-\pi}^{\pi}cos^2(nt)dt=\pi\sum\limits_{n=1}^{\infin}a_n π+πf(t)cos(nt)dt=n=1anππcos2(nt)dt=πn=1an

∴ a n = 1 π ∫ − π π f ( t ) ⋅ c o s ( n t ) d t \therefore a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cdot cos(nt)dt an=π1ππf(t)cos(nt)dt (2-3)

求解 b n b_n bn

我们对式2-1的左右两边同时乘以 s i n ( n t ) sin(nt) sin(nt),再对式子两边积分,同理可得

b n = 1 π ∫ − π π f ( t ) ⋅ s i n ( n t ) d t b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cdot sin(nt)dt bn=π1ππf(t)sin(nt)dt (2-4)


2、周期为T时 f ( t ) = f ( t + T ) f(t)=f(t+T) f(t)=f(t+T)

​ 到了这一步,我想不到一个直接求取任意周期函数的傅里叶展开式的方法,所以我们来试试把任意周期的函数转换到周期为2Π的函数,令: x = 2 π T t x=\frac{2\pi}{T}t x=T2πt,则,
f ( t ) = f ( T 2 π x ) f(t)=f(\frac{T}{2\pi}x) f(t)=f(2πTx)

f ( t + T ) = f [ T 2 π ( x + 2 π ) ] f(t+T)=f[\frac{T}{2\pi}(x+2\pi)] f(t+T)=f[2πT(x+2π)]

从以上两个式子我们能够得出,当自变量 t t t T T T为周期变化时,自变量 x x x则以 2 π 2\pi 2π为周期在变化,所以令:
f ( T 2 π x ) = g ( x ) f(\frac{T}{2\pi}x)=g(x) f(2πTx)=g(x)
则函数 g ( x ) g(x) g(x)就是一个以 2 π 2\pi 2π为周期的周期函数,也就是我们熟悉的朋友了,接下来我们把这个熟悉的朋友解剖一下。
g ( x ) = a 0 2 + ∑ n = 1 ∞ a n c o s ( n x ) + ∑ n = 1 ∞ b n s i n ( n x ) g(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infin}{a_ncos(nx)+\sum\limits_{n=1}^\infin b_nsin(nx)} g(x)=2a0+n=1ancos(nx)+n=1bnsin(nx)
其中

a 0 = 1 π ∫ − π π g ( x ) d x a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}g(x)dx a0=π1ππg(x)dx (2-5)

a n = 1 π ∫ − π π g ( x ) ⋅ c o s ( n x ) d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}g(x)\cdot cos(nx)dx an=π1ππg(x)cos(nx)dx (2-6)

b n = 1 π ∫ − π π g ( x ) ⋅ s i n ( n x ) d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}g(x)\cdot sin(nx)dx bn=π1ππg(x)sin(nx)dx (2-7)

为了得到周期为 T T T的周期函数的这三个参数,就需要把上面三个式子中的自变量 x x x转换成自变量 t t t,将 x = 2 π T t x=\frac{2\pi}{T}t x=T2πt分别代入式**(2-5)(2-6)(2-7)**中,可得:
a 0 = 2 T ∫ − T 2 T 2 f ( t ) d t a_0=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)dt a0=T22T2Tf(t)dt

a n = 2 T ∫ − T 2 T 2 f ( t ) ⋅ c o s ( 2 n π T t ) d t a_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cdot cos(\frac{2n\pi}{T}t)dt an=T22T2Tf(t)cos(T2nπt)dt

b n = 2 T ∫ − T 2 T 2 f ( t ) ⋅ s i n ( 2 n π T t ) d t b_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cdot sin(\frac{2n\pi}{T}t)dt bn=T22T2Tf(t)sin(T2nπt)dt

这样我们就得到了任意周期函数的傅里叶展开式求取方法。在工程领域,我们一般把 2 π T \frac{2\pi}{T} T2π记作 ω \omega ω,并且不存在负时间轴,所以上面三式可以改写成

a n = 2 T ∫ 0 T f ( t ) ⋅ c o s ( n ω t ) d t a_n=\frac{2}{T}\int_{0}^{T}f(t)\cdot cos(n\omega t)dt an=T20Tf(t)cos(nωt)dt

b n = 2 T ∫ 0 T f ( t ) ⋅ s i n ( n ω t ) d t b_n=\frac{2}{T}\int_{0}^{T}f(t)\cdot sin(n\omega t)dt bn=T20Tf(t)sin(nωt)dt

其展开式就可以写成:
f ( t ) = a 0 2 + ∑ n = 1 ∞ a n c o s ( n ω t ) + ∑ n = 0 ∞ b n s i n ( n ω t ) f(t)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infin}{a_ncos(n{\omega}t)+\sum\limits_{n=0}^\infin b_nsin(n{\omega}t)} f(t)=2a0+n=1ancos(nωt)+n=0bnsin(nωt)


3、傅里叶级数的复数形式

​ 上述方法其实已经可以解决周期函数的傅里叶级数问题,为什么又要引出一个它的复数形式呢?你可能会想,这不是在给自己找麻烦嘛。然而并不是,我们用它的复数形式可以使傅里叶级数的求解变得更加简单。接下来我们就来看看这个充满巧合的复数形式的傅里叶级数。

​ 首先让我们来认识一个将复数、三角函数, e e e指数联系在一起的神奇公式(欧拉公式),我们接下来的推导过程会使用到它。至于它的证明过程,我们在此处不做赘述。
e j θ = c o s θ + j s i n θ e^{j\theta}=cos\theta +jsin\theta ejθ=cosθ+jsinθ
我们先对欧拉公式进行一次改写
e − j θ = c o s θ − j s i n θ e^{-j\theta}=cos\theta -jsin\theta ejθ=cosθjsinθ
看到这两个式子我们是不是就能想到用它来表示三角函数,从而将复数引入到傅里叶展开式中呢,让我们来试一下

c o s θ = 1 2 [ e j θ + e − j θ ] cos\theta=\frac{1}{2}[e^{j\theta}+e^{-j\theta}] cosθ=21[ejθ+ejθ] (2-8)

s i n θ = − 1 2 j [ e j θ − e − j θ ] sin\theta=-\frac{1}{2}j[e^{j\theta}-e^{-j\theta}] sinθ=21j[ejθejθ] (2-9)

将式**(2-8)** **(2-9)**代入到傅里叶展开式 f ( t ) = a 0 2 + ∑ n = 1 ∞ a n c o s ( n ω t ) + ∑ n = 0 ∞ b n s i n ( n ω t ) f(t)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infin}{a_ncos(n{\omega}t)+\sum\limits_{n=0}^\infin b_nsin(n{\omega}t)} f(t)=2a0+n=1ancos(nωt)+n=0bnsin(nωt),则

f ( t ) = a 0 2 + 1 2 ∑ n = 1 ∞ a n ( e j n ω t + e − j n ω t ) − 1 2 j ∑ n = 0 ∞ b n ( e j n ω t − e − j n ω t ) f(t)=\frac{a_0}{2}+\frac{1}{2}\sum\limits_{n=1}^{\infin}a_n(e^{jn{\omega}t}+e^{-jn{\omega}t})-\frac{1}{2}j\sum\limits_{n=0}^{\infin}b_n(e^{jn{\omega}t}-e^{-jn{\omega}t}) f(t)=2a0+21n=1an(ejnωt+ejnωt)21jn=0bn(ejnωtejnωt)

f ( t ) = a 0 2 + ∑ n = 1 ∞ a n − j b n 2 e j n ω t + ∑ n = 1 ∞ a n + j b n 2 e − j n ω t f(t)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infin}\frac{a_n-jb_n}{2}e^{jn\omega t}+\sum\limits_{n=1}^{\infin}\frac{a_n+jb_n}{2}e^{-jn\omega t} f(t)=2a0+n=12anjbnejnωt+n=12an+jbnejnωt

把这个式子的最后一项进行改写可得,

f ( t ) = ∑ n = 0 0 a 0 2 ⋅ e j n ω t + ∑ n = 1 ∞ a n − j b n 2 e j n ω t + ∑ n = − ∞ − 1 a − n + j b − n 2 e j n ω t f(t)=\sum\limits_{n=0}^{0}\frac{a_0}{2}\cdot e^{jn\omega t}+\sum\limits_{n=1}^{\infin}\frac{a_n-jb_n}{2}e^{jn\omega t}+\sum\limits_{n=-\infin}^{-1}\frac{a_{-n}+jb_{-n}}{2}e^{jn\omega t} f(t)=n=002a0ejnωt+n=12anjbnejnωt+n=12an+jbnejnωt

提出公因式,系数用 c n c_n cn来代替,且累加的区间是整个数轴,那么

f ( t ) = ∑ − ∞ ∞ c n ⋅ e j n ω t f(t)=\sum\limits_{-\infin}^{\infin}c_n\cdot e^{jn\omega t} f(t)=cnejnωt (2-10)

这就是我们得傅里叶级数展开式得复数形式,接下来我们来讨论表达式中系数的求解方法。

  • n = 0 n=0 n=0

    c 0 = a 0 2 = 1 T ∫ 0 T f ( t ) d t c_0=\frac{a_0}{2}=\frac{1}{T}\int_{0}^{T}f(t)dt c0=2a0=T10Tf(t)dt

  • n > 0 n>0 n>0

    c n = a n − j b n 2 c_n=\frac{a_n-jb_n}{2} cn=2anjbn

    c n = 1 2 [ 2 T ∫ 0 T f ( t ) ⋅ c o s ( n ω t ) d t − j 2 T ∫ 0 T f ( t ) ⋅ s i n ( n ω t ) d t ] c_n=\frac{1}{2}[\frac{2}{T}\int_{0}^{T}f(t)\cdot cos(n\omega t)dt-j\frac{2}{T}\int_{0}^{T}f(t)\cdot sin(n\omega t)dt] cn=21[T20Tf(t)cos(nωt)dtjT20Tf(t)sin(nωt)dt]

    c n = 1 T ∫ 0 T f ( t ) ⋅ [ c o s ( n ω t ) − j s i n ( n ω t ) ] d t c_n=\frac{1}{T}\int_{0}^{T}f(t)\cdot [cos(n\omega t)-jsin(n\omega t)]dt cn=T10Tf(t)[cos(nωt)jsin(nωt)]dt

    c n = 1 T ∫ 0 T f ( t ) ⋅ [ c o s ( − n ω t ) + j s i n ( − n ω t ) ] d t c_n=\frac{1}{T}\int_{0}^{T}f(t)\cdot [cos(-n\omega t)+jsin(-n\omega t)]dt cn=T10Tf(t)[cos(nωt)+jsin(nωt)]dt

    根据欧拉公式可得,

    c n = 1 T ∫ 0 T f ( t ) ⋅ e − j n ω t d t c_n=\frac{1}{T}\int_{0}^{T}f(t)\cdot e^{-jn\omega t}dt cn=T10Tf(t)ejnωtdt

  • n < 0 n<0 n<0

    c n = a − n + j b − n 2 c_n=\frac{a_{-n}+jb_{-n}}{2} cn=2an+jbn

    c n = 1 2 [ 2 T ∫ 0 T f ( t ) ⋅ c o s ( − n ω t ) d t + j 2 T ∫ 0 T f ( t ) ⋅ s i n ( − n ω t ) d t ] c_n=\frac{1}{2}[\frac{2}{T}\int_{0}^{T}f(t)\cdot cos(-n\omega t)dt+j\frac{2}{T}\int_{0}^{T}f(t)\cdot sin(-n\omega t)dt] cn=21[T20Tf(t)cos(nωt)dt+jT20Tf(t)sin(nωt)dt]

    c n = 1 T ∫ 0 T f ( t ) ⋅ [ c o s ( − n ω t ) + j s i n ( − n ω t ) ] d t c_n=\frac{1}{T}\int_{0}^{T}f(t)\cdot [cos(-n\omega t)+jsin(-n\omega t)]dt cn=T10Tf(t)[cos(nωt)+jsin(nωt)]dt

    c n = 1 T ∫ 0 T f ( t ) ⋅ e − j n ω t d t c_n=\frac{1}{T}\int_{0}^{T}f(t)\cdot e^{-jn\omega t}dt cn=T10Tf(t)ejnωtdt (2-11)

这几步讨论我们就可以看出复数形式傅里叶级数的巧合之处,即不论n取任何整数,我们都只需要求取一个 c n c_n cn就能将一个周期函数分解成若干复指数函数相加的形式,并且 c n c_n cn的求取方法都相同,式**(2-10)(2-11)**分别是它的表述形式和参数求取方法。


三、傅里叶变换

​ 以上的内容我们就完全地解决了周期函数的傅里叶级数展开问题,但我们的结论还是存在局限性,因为在生活中我们碰到的各种信号往往都不具有周期性,所以到这里我们还得说一句“革命尚未成功,同志仍需努力”。

​ 接下来就让我们一起思考一下怎么样解决这个非周期的问题。我们试想一下,一个非周期的函数我们是否能够把它看成一个永远也走不出它的第一个周期的周期函数呢?相信你已经有了这个解决方案。我们依然从周期函数的情况入手,它的展开式为:

f ( t ) = ∑ − ∞ ∞ c n ⋅ e j n ω 0 t f(t)=\sum\limits_{-\infin}^{\infin}c_n\cdot e^{jn\omega_{0} t} f(t)=cnejnω0t (3-1)

c n = 1 T ∫ 0 T f ( t ) ⋅ e − j n ω 0 t d t c_n=\frac{1}{T}\int_{0}^{T}f(t)\cdot e^{-jn\omega_{0} t}dt cn=T10Tf(t)ejnω0tdt (3-2)

我们先把目光集中在式**(3-2)**上面,它是一个关于 t t t的定积分,所以在把这个积分结构计算出来以后,变量 t t t是能够被消去的,所以对于 c n c_n cn来说,最终能够影响它的变量就变成了 n ω 0 n\omega_{0} nω0,也即 c n c_n cn是一个关于 n ω 0 n\omega_{0} nω0的序列,我们可以来随意作出一个它的图像

在这里插入图片描述

这里红色的竖线就是我们的 c n c_n cn,至于这里使用了一个三维直角坐标系的原因就是 c n c_n cn为一个复数,详情请参考 c n c_n cn的求取过程。下面就是令人恍然大明白的公式推导了,我们先将**(3-2)代入(3-1)**中,可得:
f ( t ) = ∑ − ∞ ∞ 1 T ∫ 0 T f ( t ) ⋅ e − j n ω 0 t d t ⋅ e j n ω 0 t f(t)=\sum\limits_{-\infin}^{\infin}\frac{1}{T}\int_{0}^{T}f(t)\cdot e^{-jn\omega_{0} t}dt\cdot e^{jn\omega_{0} t} f(t)=T10Tf(t)ejnω0tdtejnω0t
根据之前的分析我们知道,一个非周期函数可以看作一个周期无穷大的周期函数,所以当上面这个用于周期函数的式子我们就可以拿来使用,但是在使用它之前,我们要对它其中的一些参数进行改写。

  1. 关于 1 T \frac{1}{T} T1

    ∵ ω 0 = 2 π T \because \omega_0=\frac{2\pi}{T} ω0=T2π

    ∴ 1 T = 2 π ω 0 \therefore \frac{1}{T}=\frac{2\pi}{\omega_0} T1=ω02π

  2. 关于 ω 0 \omega_0 ω0

    ∵ ω 0 = 2 π T \because \omega_0=\frac{2\pi}{T} ω0=T2π

    ∴ T ⟶ ∞ \therefore T\longrightarrow \infin T时, ω 0 ⟶ 0 \omega_0\longrightarrow 0 ω00

    ∴ ω 0 = ( n + 1 ) ω 0 − n ω 0 = Δ ω = d ω \therefore \omega_0=(n+1)\omega_0-n\omega_0=\Delta\omega=d\omega ω0=(n+1)ω0nω0=Δω=dω

  3. n ω 0 n\omega_0 nω0的连续化:

    ∵ ω 0 ⟶ 0 \because \omega_0\longrightarrow 0 ω00

    ∴ \therefore 图中的每一个离散点就变成了连续函数,我们就把 n ω 0 n\omega_0 nω0写成 ω \omega ω

  4. 积分区间:

    ∵ T ⟶ ∞ \because T\longrightarrow \infin T

    ∴ \therefore 我们在区间 ( − ∞ , + ∞ ) (-\infin,+\infin) (,+)对其积分

所以上面的式子我们就能够写成符合非周期函数的形式,即
f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) ⋅ e − j ω t d t ⋅ e j ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infin}^{\infin}\int_{-\infin}^{\infin}f(t)\cdot e^{-j\omega t}dt\cdot e^{j\omega t}d\omega f(t)=2π1f(t)ejωtdtejωtdω
显然 ∫ − ∞ ∞ f ( t ) ⋅ e − j ω t d t \int_{-\infin}^{\infin}f(t)\cdot e^{-j\omega t}dt f(t)ejωtdt是一个关于 ω \omega ω的函数,所以我们令

F ( ω ) = ∫ − ∞ ∞ f ( t ) ⋅ e − j ω t d t F(\omega)=\int_{-\infin}^{\infin}f(t)\cdot e^{-j\omega t}dt F(ω)=f(t)ejωtdt (3-3)

那么

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) ⋅ e j ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infin}^{\infin}F(\omega)\cdot e^{j\omega t}d\omega f(t)=2π1F(ω)ejωtdω (3-4)

式**(3-3)** **(3-4)**分别就是我们的傅立叶变换和傅里叶逆变换的定义式,至此我们就解决了非周期函数的傅里叶变换问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值