数据集划分方法:KS算法和SPXY算法原理(附源论文及代码)

本文介绍了KS算法和SPXY算法在数据集划分中的应用,详细阐述了两者原理,包括KS算法的欧式距离选择策略和SPXY算法的x、y方向距离结合。同时,提供了SPXY算法的Matlab源代码,适用于机器学习中的数据集划分。
摘要由CSDN通过智能技术生成

博主注:在进行近红外定量预测的研究中,发现网上现存关于KS和SPXY算法的公式有误,特查询了源头论文,进行更正和记录。若有疑问之处,欢迎大家一起交流!

目录

KS算法和SPXY算法之间的联系

Kennard-Stone(KS)算法原理

SPXY算法原理

SPXY官方源代码(Matlab)

KS算法和SPXY算法之间的联系


      SPXY是基于KS算法提出的一种改进方法,KS对数据集的划分依据是计算不同样本的x向量方向(即常说的数据集的特征维度方向)的欧氏距离;而SPXY顾名思义,在此基础上增加了对不同样本的y向量方向(即常说的数据集的真实值维度方向)的欧氏距离的计算,并通过正则化将x和y方向的距离结合,更加全面的评估和划分数据集。

      KS算法最初是为了创建实验设计的响应面而开发的:原论文链接:Kennard, R.W. and Stone, L.A. (1969) Computer-aided Design of Experiments. Technometrics, 11, 137-148. https://doi.org/10.1080/00401706.1969.10490666

      对以上这篇论文的深入阅读可以跳过,因为流传较广的KS和SPXY的原理公式其实都来自提出SPXY算法的原论文(感兴趣的同学可以阅读一下):

Galvao R K H, Araujo M C U, José G E, et al. A method for calibration and validation subset partit

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值