kennard-stone算法实现样本集划分(ks算法)

目录

一、 Kennard-Stone算法原理(KS算法)

二、Kennard-Stone算法作用

三、代码

四、对选出来的train样本使用T-SNE算法进行绘制

五、参考链接


一、 Kennard-Stone算法原理(KS算法)

KS算法原理:把所有的样本都看作训练集候选样本,依次从中挑选样本进训练集。首先选择欧氏距离最远的两个样本进入训练集,其后通过计算剩下的每一个样品到训练集内每一个已知样品的欧式距离,找到距已选样本最远以及最近的两个样本,并将这两个样本选入训练集,重复上述步骤直到样本数量达到要求。

欧式距离计算公式:

Xp,Xq表示两个不同的样本,N代表样本的光谱波点数量

二、Kennard-Stone算法作用

Kennard-Stone算法作用:用于数据集的划分,使用算法,将输入的数据集划分为训练集、测试集,并同时输出训练集和测试集在原样本集中的编号信息,方便样本的查找。

三、代码

版本1、返回样本索引

# select samples using Kennard-Stone algorithm
import numpy as np


# --- input ---
# X : dataset of X-variables (samples x variables)
# k : number of samples to be selected
#
# --- output ---
# selected_sample_numbers : selected sample numbers (training data)
# remaining_sample_numbers : remaining sample numbers (test data)

def kennardstonealgorithm(x_variables, k):
    x_variables = np.array(x_variables)
    original_x = x_variables
    distance_to_average = ((x_variables - np.tile(x_variables.mean(axis=0), (x_variables.shape[0], 1))) ** 2).sum(
        axis=1)
    max_distance_sample_number = np.where(distance_to_average == np.max(distance_to_average))
    max_distance_sample_number = max_distance_sample_number[0][0]
    selected_sample_numbers = list()
    selected_sample_numbers.append(max_distance_sample_number)
    remaining_sample_numbers = np.arange(0, x_variables.shape[0], 1)
    x_variables = np.delete(x_variables, selected_sample_numbers, 0)
    remaining_sample_numbers = np.delete(remaining_sample_numbers, selected_sample_numbers, 0)
    for iteration in range(1, k):
        selected_samples = original_x[selected_sample_numbers, :]
        min_distance_to_selected_samples = list()
        for min_distance_calculation_number in range(0, x_variables.shape[0]):
            distance_to_selected_samples = ((selected_samples - np.tile(x_variables[min_distance_calculation_number, :],
                                                                        (selected_samples.shape[0], 1))) ** 2).sum(
                axis=1)
            min_distance_to_selected_samples.append(np.min(distance_to_selected_samples))
        max_distance_sample_number = np.where(
            min_distance_to_selected_samples == np.max(min_distance_to_selected_samples))
        max_distance_sample_number = max_distance_sample_number[0][0]
        selected_sample_numbers.append(remaining_sample_numbers[max_distance_sample_number])
        x_variables = np.delete(x_variables, max_distance_sample_number, 0)
        remaining_sample_numbers = np.delete(remaining_sample_numbers, max_distance_sample_number, 0)

    return selected_sample_numbers, remaining_sample_numbers

np.random.seed(0)
a = np.random.random((100,125))
b = np.random.randint(0,5,(100,))
selected_sample_numbers, remaining_sample_numbers = kennardstonealgorithm(a,80)

print(remaining_sample_numbers)

版本2、直接返回划分好的训练和测试样本

import numpy as np

def ks(x, y, test_size=0.2):
    """
    :param x: shape (n_samples, n_features)
    :param y: shape (n_sample, )
    :param test_size: the ratio of test_size (float)
    :return: spec_train: (n_samples, n_features)
             spec_test: (n_samples, n_features)
             target_train: (n_sample, )
             target_test: (n_sample, )
    """
    M = x.shape[0]
    N = round((1 - test_size) * M)
    samples = np.arange(M)

    D = np.zeros((M, M))

    for i in range((M - 1)):
        xa = x[i, :]
        for j in range((i + 1), M):
            xb = x[j, :]
            D[i, j] = np.linalg.norm(xa - xb)

    maxD = np.max(D, axis=0)
    index_row = np.argmax(D, axis=0)
    index_column = np.argmax(maxD)

    m = np.zeros(N)
    m[0] = np.array(index_row[index_column])
    m[1] = np.array(index_column)
    m = m.astype(int)
    dminmax = np.zeros(N)
    dminmax[1] = D[m[0], m[1]]

    for i in range(2, N):
        pool = np.delete(samples, m[:i])
        dmin = np.zeros((M - i))
        for j in range((M - i)):
            indexa = pool[j]
            d = np.zeros(i)
            for k in range(i):
                indexb = m[k]
                if indexa < indexb:
                    d[k] = D[indexa, indexb]
                else:
                    d[k] = D[indexb, indexa]
            dmin[j] = np.min(d)
        dminmax[i] = np.max(dmin)
        index = np.argmax(dmin)
        m[i] = pool[index]

    m_complement = np.delete(np.arange(x.shape[0]), m)

    spec_train = x[m, :]
    target_train = y[m]
    spec_test = x[m_complement, :]
    target_test = y[m_complement]
    return spec_train, spec_test, target_train, target_test

np.random.seed(0)
a = np.random.random((100,125))
b = np.random.randint(0,5,(100,))
print(b)
spec_train, spec_test, target_train, target_test = ks(a,b)
print(spec_train.shape,target_train.shape)
print(spec_test.shape,target_test.shape)

四、对选出来的train样本使用T-SNE算法进行绘制

# -*- coding: utf-8 -*- %reset -f
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE

# --- input ---
# X : dataset of X-variables (samples x variables)
# k : number of samples to be selected
#
# --- output ---
# selected_sample_numbers : selected sample numbers (training data)
# remaining_sample_numbers : remaining sample numbers (test data)

def kennardstonealgorithm(x_variables, k):
    x_variables = np.array(x_variables)
    original_x = x_variables
    distance_to_average = ((x_variables - np.tile(x_variables.mean(axis=0), (x_variables.shape[0], 1))) ** 2).sum(
        axis=1)
    max_distance_sample_number = np.where(distance_to_average == np.max(distance_to_average))
    max_distance_sample_number = max_distance_sample_number[0][0]
    selected_sample_numbers = list()
    selected_sample_numbers.append(max_distance_sample_number)
    remaining_sample_numbers = np.arange(0, x_variables.shape[0], 1)
    x_variables = np.delete(x_variables, selected_sample_numbers, 0)
    remaining_sample_numbers = np.delete(remaining_sample_numbers, selected_sample_numbers, 0)
    for iteration in range(1, k):
        selected_samples = original_x[selected_sample_numbers, :]
        min_distance_to_selected_samples = list()
        for min_distance_calculation_number in range(0, x_variables.shape[0]):
            distance_to_selected_samples = ((selected_samples - np.tile(x_variables[min_distance_calculation_number, :],
                                                                        (selected_samples.shape[0], 1))) ** 2).sum(
                axis=1)
            min_distance_to_selected_samples.append(np.min(distance_to_selected_samples))
        max_distance_sample_number = np.where(
            min_distance_to_selected_samples == np.max(min_distance_to_selected_samples))
        max_distance_sample_number = max_distance_sample_number[0][0]
        selected_sample_numbers.append(remaining_sample_numbers[max_distance_sample_number])
        x_variables = np.delete(x_variables, max_distance_sample_number, 0)
        remaining_sample_numbers = np.delete(remaining_sample_numbers, max_distance_sample_number, 0)

    return selected_sample_numbers, remaining_sample_numbers

# 对样本进行预处理并画图
def plot_embedding(data, title):
    """
    :param data:数据集
    :param label:样本标签
    :param title:图像标题
    :return:图像
    """
    x_min, x_max = np.min(data, 0), np.max(data, 0)
    data = (data - x_min) / (x_max - x_min)  # 对数据进行归一化处理
    fig = plt.figure()  # 创建图形实例
    ax = plt.subplot(111)  # 创建子图
    # 遍历所有样本
    for i in range(data.shape[0]):
        # 在图中为每个数据点画出标签
        plt.text(data[i, 0], data[i, 1], str(0), color=plt.cm.Set1(0 / 10),
                 fontdict={'weight': 'bold', 'size': 7})
    plt.xticks()  # 指定坐标的刻度
    plt.yticks()
    plt.title(title, fontsize=14)
    # 返回值
    return fig

if __name__ == '__main__':
    np.random.seed(0)
    data = np.random.random((100,125))
    y = np.random.randint(0,5,(100,))

    number_of_selected_samples = 80
    idxs_selected_sample, idxs_remaining_sample = kennardstonealgorithm(data, number_of_selected_samples)

    data_slt = data[idxs_selected_sample]
    tsne = TSNE(n_components=2, init='pca', random_state=0)
    reslut = tsne.fit_transform(data_slt)

    fig = plot_embedding(reslut, 't-SNE Embedding of digits')
    plt.show()

五、参考链接

GitHub - hkaneko1985/kennardstonealgorithm: Sample selection using Kennard-Stone algorighm

KS算法样本集划分

### 回答1: kennard-stone算法是一种用于聚类分析的方法,旨在找到一组代表点,以表示给定数据集的类别信息。下面给出一个简单的kennard-stone算法的MATLAB实现示例: ```MATLAB function representativePoints = kennardStone(data, k) % 数据集中的样本数量 n = size(data, 1); % 计算样本间的欧氏距离 distanceMatrix = pdist2(data, data); % 初始化代表点集合 representativePoints = zeros(k, size(data, 2)); % 在数据集中随机选择一个数据点作为第一个代表点 representativePoints(1, :) = data(randi(n), :); % 初始化最短距离 shortestDistances = zeros(n, 1); % 选择接下来的k-1个代表点 for i = 2:k % 计算每个样本点与已选代表点的最短距离 for j = 1:n shortestDistances(j) = min(distanceMatrix(j, 1:i-1)); end % 找到最大的最短距离对应的样本点作为下一个代表点 [~, nextRepresentativeIndex] = max(shortestDistances); representativePoints(i, :) = data(nextRepresentativeIndex, :); end end ``` 在这个实现中,输入参数`data`为待聚类的数据集,`k`为所需的代表点数量。输出结果`representativePoints`是一个`k`行`m`列的矩阵,其中`m`为数据集中每个样本的维度。 该实现的基本步骤如下: 1. 计算样本之间的欧氏距离,可以使用pdist2函数。 2. 初始化一个空的代表点集合。 3. 随机选择一个数据样本作为第一个代表点。 4. 计算每个样本点与已选代表点的最短距离。 5. 找到最大的最短距离对应的样本点作为下一个代表点。 6. 重复步骤4和步骤5,直到选择了所需数量的代表点。 7. 返回最终的代表点集合。 这个实现仅仅是一个简单的例子,并不能处理一些特殊情况,比如数据集中含有离群点等。使用时需要根据具体要求进行适当的调整和改进。 ### 回答2: Kennard-Stone算法是一种用于数据聚类和分类的经典算法,它在化学、生物学和其他领域中得到了广泛的应用。下面我将简要解释如何在Matlab中实现Kennard-Stone算法。 首先,我们需要有一个数据集。假设我们的数据集是一个NxM的矩阵,其中N是数据点的数量,M是每个数据点的维度。你可以从一个文件中读取数据,或者在代码中直接定义一个矩阵。 接下来,我们需要定义一个函数来计算两个数据点之间的距离。在Kennard-Stone算法中,通常使用欧氏距离来衡量数据点之间的相似性。Matlab提供了一个内置函数`pdist2`来计算两个数据点之间的距离。你可以使用以下代码来计算数据点i和j之间的欧氏距离: ``` dist = pdist2(data(i,:), data(j,:)); ``` 其中,`data(i,:)`表示第i个数据点的特征向量,`data(j,:)`表示第j个数据点的特征向量。`dist`表示i和j之间的欧氏距离。 然后,我们需要实现Kennard-Stone算法的主要步骤。算法的主要思想是根据数据点之间的距离选择一组具有最大距离的初始聚类中心。然后,根据与这些中心点的距离,将剩余的数据点分配到最近的聚类中心。 下面是一种实现Kennard-Stone算法的简单方法: 1. 随机选择一个数据点作为第一个聚类中心。 2. 计算其他数据点与该聚类中心之间的距离。 3. 选择与第一个聚类中心距离最大的数据点作为第二个聚类中心。 4. 重复步骤2和步骤3,直到选择了所需数量的聚类中心。 5. 将剩余的数据点分配到最近的聚类中心。 最后,实现完整的Kennard-Stone算法后,你可以将结果可视化,或者进一步分析和应用聚类结果。 总结来说,通过在Matlab中使用`pdist2`函数计算欧氏距离,并实现Kennard-Stone算法的主要步骤,你就可以在Matlab中实现Kennard-Stone算法了。记得根据你的具体需求和数据集的特点,灵活调整算法参数和步骤。 ### 回答3: Kennard-Stone算法是一种用于数据聚类的算法,它不需要事先指定聚类簇的数量。下面是如何在Matlab中实现Kennard-Stone算法的步骤: 1. 导入数据:将需要聚类的数据导入Matlab中,可以使用Matlab内置的load函数或csvread函数加载数据集。 2. 计算距离矩阵:根据数据集中的数据点计算两两之间的距离。可以使用pdist函数计算点与点之间的欧几里德距离或其他距离度量。 3. 选择初始点:从距离矩阵中选择一个数据点作为初始点。 4. 选择下一个点:根据最小距离准则,选择与已有聚类点最远距离的数据点作为下一个聚类点。 5. 更新聚类点集:将新选择的聚类点添加到聚类点集中,重复步骤4直到达到预定的聚类簇的数量。 6. 聚类结果:将每个数据点分配到最近的聚类点,形成最终的聚类结果。 7. 可视化结果:可以使用Matlab的plot函数将聚类结果可视化,用不同的颜色或标记显示不同的聚类簇。 Kennard-Stone算法是一种简单且有效的数据聚类算法,适用于各种类型的数据集。通过在Matlab中实现Kennard-Stone算法,可以实现自动聚类和可视化,并可进一步进行后续分析和决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值