Dify开发实战-自制插件 和安装python3最新版本

自定义插件

  • Dify 插件脚手架工具
  • Python 环境,版本号 ≥ 3.12

安装Python
一 进入官网 https://www.python.org/downloads/windows/ 点击下载
在这里插入图片描述
二、安装python(本文中有借鉴其他图片 所以图片展示python版本可能不一致 请忽略)
1.双击打开python的安装程序
2.选择Add Python ---- to PATH(配置PATH环境,如果没有选择则需要手动配置环境)===>选择自定义安装
在这里插入图片描述
3.默认点击Next
在这里插入图片描述
4.选择安装的路径,点击Next 根据自己的要求安装在D盘
在这里插入图片描述
三、验证安装是否成功
1.进入命令提示符(可以win+R 输入cmd回车进入)
在这里插入图片描述

安装 Dify 插件开发脚手架工具

一 进入插件地址https://github.com/langgenius/dify-plugin-daemon/releases 下载插件
在这里插入图片描述
切换到 dify-plugin-windows-amd64.exe 下载目录,然后复制以下代码执行

./dify-plugin-windows-amd64.exe version 

在这里插入图片描述
插件初始化

./dify-plugin-windows-amd64.exe plugin init 

在这里插入图片描述
这里需要依次填写三个内容

  • plugin name 插件名称
  • author 作者信息
  • description 详细
    在这里插入图片描述
    按照提示依次输入,enter进入下一步。
    开发语言选择
    在这里插入图片描述
    选择模板在这里插入图片描述
    权限选择在这里插入图片描述上下移动,tab键选择。开发tools 必选tools、apps、endpoints权限,存储、大模型根据需求来选择。

完成选择后,项目框架就被自动创建完成。
在这里插入图片描述
在当前目录执行命令 查看是否可以运行 python -m main.py
在这里插入图片描述
报错了 python没有dify_plugin模块 安装dify_plugin模块 pip install dify_plugin
在这里插入图片描述
再次运行python -m main.py 还是报错 决定跳过 这条路走不通 就用上传的

准备打包上传插件

打包插件

dify-plugin-windows-amd64.exe plugin package yuncong_demo

在这里插入图片描述
选择本地插件上传
在这里插入图片描述
在这里插入图片描述
报错了 复制报错信息PluginDaemonBadRequestError: plugin verification has been enabled, and the plugin you want to install has a bad signature

解决办法:在 /docker/.env 配置文件的末尾添加 FORCE_VERIFYING_SIGNATURE=false 字段,运行以下命令重启 Dify 服务:

cd docker
docker compose down
docker compose up -d

再次上传
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

<think>好的,用户的问题是关于如何在指定版本的Docker容器中安装Python库。首先,我需要理解用户的具体需求。他们可能需要在不同版本的Docker容器中运行不同版本的Python,并且安装特定的库。这可能涉及到容器的创建、进入容器执行命令,以及可能的Dockerfile优化。 根据提供的引用资料,引用[1]提到了进入Docker容器内部进行操作,比如更新Python版本。引用[2]说明了如何在Docker中安装Python,这可能包括创建带有特定Python版本的基础镜像。引用[3]提到了使用docker-compose来管理容器,这可能对自动化部署有帮助。引用[4]则涉及通过SSH连接容器,这可能是在容器内执行命令的另一种方式。 接下来,用户需要的是安装Python库到指定版本的容器中。可能的步骤包括: 1. 确定基础镜像:用户需要选择已包含所需Python版本的Docker镜像,例如python:3.8-slim。 2. 进入容器:可以使用docker exec命令进入运行中的容器,或者启动新容器并附加终端。 3. 安装库:在容器内部使用pip安装需要的库。 4. 持久化安装:如果希望保留安装的库,需要在Dockerfile中定义安装步骤,然后重新构建镜像。这样每次启动容器时都会包含这些库。 另外,用户可能需要知道如何验证安装是否成功,比如运行Python解释器导入库。如果遇到权限问题,可能需要使用--user参数或以root用户身份运行命令。 还要考虑用户是否希望一次性安装还是需要自动化流程。对于后者,编写Dockerfile并使用docker build会更合适。而对于临时测试,直接进入容器安装可能更方便。 需要注意用户可能对Docker的基本操作不太熟悉,所以步骤需要详细,比如如何运行容器,如何执行命令等。同时,提醒用户关于容器临时性的问题,如果不提交更改,安装的库在容器停止后会被清除,因此建议使用Dockerfile来确保环境的可重复性。 最后,生成相关问题需要考虑用户可能进一步的需求,比如管理多个版本的库、处理依赖冲突、优化镜像大小等。</think>### 分步解答 #### 如何在指定版本的Docker容器中安装Python库? 1. **选择基础镜像** 使用包含所需Python版本的Docker镜像,例如: ```bash docker run -it python:3.8-slim /bin/bash ``` 此处`python:3.8-slim`表示基于Python 3.8的官方镜像[^2]。 2. **进入容器安装库** 启动容器后,通过交互式终端直接安装库: ```bash pip install numpy # 安装单个库 pip install -r requirements.txt # 安装依赖列表 ``` 3. **通过Dockerfile持久化安装** 创建`Dockerfile`以固化安装步骤: ```dockerfile FROM python:3.8-slim # 指定Python版本 RUN pip install numpy pandas # 安装库 COPY . /app # 复制应用代码 WORKDIR /app ``` 构建镜像: ```bash docker build -t my-python-app . ``` 4. **验证安装** 进入容器并检查已安装库: ```bash docker exec -it <容器ID> python -c "import numpy; print(numpy.__version__)" ``` #### 注意事项 - **容器临时性**:若未通过`Dockerfile`构建镜像,直接安装的库会在容器删除后丢失。 - **权限问题**:部分库需要系统依赖,需在Dockerfile中添加`apt-get install`命令: ```dockerfile RUN apt-get update && apt-get install -y libssl-dev ``` - **多阶段构建**:优化镜像体积时,可使用多阶段构建[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值