本地部署Dify并通过Python访问API

本地部署Dify并通过Python访问API

本文将介绍如何在本地部署Dify应用后,通过Python代码访问API并进行数据交互。

1. 获取应用密钥

首先,进入Dify应用后台,找到并复制应用的密钥(API Key)。如图所示:

在这里插入图片描述

重要提示
URL端口配置:确认你在本地部署时是否修改了nginx的默认端口。若使用非80端口(如81),访问时需要在URL中加上端口号,否则直接使用默认端口。
API Key作用:API Key用于访问时标识对应的应用实例。

2. 使用Python发送请求

以下Python代码展示了如何发送请求并处理响应。请替换代码中的api_key与url为实际的值。


import requests
import json

# API请求的URL,注意替换为你的实际端口号(如未修改端口,默认不需要加端口号)
url = 'http://localhost:81/v1/chat-messages'
### 本地环境部署 Dify 及其应用 #### 准备工作 为了成功在本地环境中部署 Dify 应用程序,需先安装配置好 Python 环境以及必要的依赖库。确保已安装最新版本的 pip 和 virtualenv 工具。 #### 安装 Dify 通过 GitHub 获取最新的源码来安装 Dify 是一种常见的方式。克隆仓库后进入项目目录执行如下命令完成安装: ```bash git clone https://github.com/dify-ai/dify.git cd dify pip install -r requirements.txt ``` 此过程会自动处理所有必需的Python包[^1]。 #### 设置 Ollama 大型语言模型服务 对于希望集成大型语言模型的服务端来说,在服务器上启动 Ollama 设置相应的环境变量是非常重要的一步。这可以通过编辑 `/etc/systemd/system/ollama.service` 文件中的 `[Service]` 部分实现特定需求下的自定义配置,比如调整 `OLLAMA_HOST` 或者指定 GPU 使用情况等参数[^3]。 #### 启动与管理 Dify 应用 当上述准备工作完成后,便可以在本地机器上尝试启动 Dify 应用了。通常情况下,只需要简单地运行项目的入口脚本即可开始测试: ```bash python app.py ``` 如果一切正常,则应该能够访问由该应用程序提供的 Web 接口来进行交互体验了。 #### 测试连接至 Ollama 模型 为了让 Dify 正确调用已经部署好的 Ollama LLMs (Large Language Models),还需要确认两者之间的网络连通性和 API 调用接口是否匹配良好。此时可利用简单的 HTTP 请求工具如 curl 来验证这一点: ```bash curl http://localhost:7861/v1/models/ ``` 这条命令将返回当前可用的语言模型列表,证明二者之间建立了有效的通信链路[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值