[FEM-3]有限元分析的基本流程


1 问题描述

下图是一个一维三连杆结构,相关的材料参量和尺寸为

E 1 = E 2 = E 3 = 2 × 1 0 5 P a 3 A 1 = 2 A 2 = A 3 = 0.06 m 2 l 1 = l 2 = l 3 = 0.1 m \begin{equation} \begin{aligned} E_1 = E_2 = E_3 = 2 \times 10^5 \rm{Pa} \quad 3A_1 = 2 A_2 = A_3 = 0.06 \rm{m}^2 \quad l_1 = l_2 = l_3 = 0.1 \rm{m} \end{aligned} \end{equation} E1=E2=E3=2×105Pa3A1=2A2=A3=0.06m2l1=l2=l3=0.1m

图1 1D三连杆结构的受力图示

图1 1D三连杆结构的受力图示

1.1 节点编号及单元划分

在杆件连接处划分节点,对应的节点和单元编号(numbering of element)如图1所示。将每一个单元分离出来,并标出每一个节点的位移和外力,如图2所示。此处位移和力的方向均以X轴正方向来标注。

图2 各个单元的节点位移和外力

图2 各个单元的节点位移和外力

1.2 计算各个单元的单元刚度方程

(1)单元①的刚度方程

[ E 1 A 1 l 1 − E 1 A 1 l 1 − E 1 A 1 l 1 E 1 A 1 l 1 ] [ u 1 u 2 ] = [ P 1 ( 1 ) P 2 ( 1 ) ] \begin{equation} \begin{bmatrix} \cfrac{E_1 A_1}{l_1} & -\cfrac{E_1 A_1}{l_1} \\ -\cfrac{E_1 A_1}{l_1} & \cfrac{E_1 A_1}{l_1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} P_1^{(1)} \\ P_2^{(1)} \end{bmatrix} \end{equation} l1E1A1l1E1A1l1E1A1l1E1A1 [u1u2]=[P1(1)P2(1)]

(2)单元②的刚度方程

[ E 2 A 2 l 2 − E 2 A 2 l 2 − E 2 A 2 l 2 E 2 A 2 l 2 ] [ u 2 u 3 ] = [ P 2 ( 2 ) P 3 ( 2 ) ] \begin{equation} \begin{bmatrix} \cfrac{E_2 A_2}{l_2} & -\cfrac{E_2 A_2}{l_2} \\ -\cfrac{E_2 A_2}{l_2} & \cfrac{E_2 A_2}{l_2} \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} P_2^{(2)} \\ P_3^{(2)} \end{bmatrix} \end{equation} l2E2A2l2E2A2l2E2A2l2E2A2 [u2u3]=[P2(2)P3(2)]

(3)单元③的刚度方程

[ E 3 A 3 l 3 − E 3 A 3 l 3 − E 3 A 3 l 3 E 3 A 3 l 3 ] [ u 3 u 4 ] = [ P 3 ( 3 ) P 4 ( 3 ) ] \begin{equation} \begin{bmatrix} \cfrac{E_3 A_3}{l_3} & -\cfrac{E_3 A_3}{l_3} \\ -\cfrac{E_3 A_3}{l_3} & \cfrac{E_3 A_3}{l_3} \end{bmatrix} \begin{bmatrix} u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} P_3^{(3)} \\ P_4^{(3)} \end{bmatrix} \end{equation} l3E3A3l3E3A3l3E3A3l3E3A3 [u3u4]=[P3(3)P4(3)]

1.3 组装各单元刚度方程

由于整体结构是由各个单元按一定连接关系组合而成的,因此,需要按照节点的对应位置将式(2)、式(3)、式(4)进行组装,以形成整体刚度方程

[ E 1 A 1 l 1 − E 1 A 1 l 1 0 0 − E 1 A 1 l 1 E 1 A 1 l 1 + E 2 A 2 l 2 − E 2 A 2 l 2 0 0 − E 2 A 2 l 2 E 2 A 2 l 2 + E 3 A 3 l 3 − E 3 A 3 l 3 0 0 − E 3 A 3 l 3 E 3 A 3 l 3 ] [ u 1 u 2 u 3 u 4 ] = [ P 1 ( 1 ) P 2 ( 1 ) + P 2 ( 2 ) P 3 ( 2 ) + P 3 ( 3 ) P 4 ( 3 ) ] \begin{equation} \begin{bmatrix} \cfrac{E_1 A_1}{l_1} & -\cfrac{E_1 A_1}{l_1} & 0 & 0\\ -\cfrac{E_1 A_1}{l_1} & \cfrac{E_1 A_1}{l_1} + \cfrac{E_2 A_2}{l_2} & -\cfrac{E_2 A_2}{l_2} & 0 \\ 0 & -\cfrac{E_2 A_2}{l_2} & \cfrac{E_2 A_2}{l_2} + \cfrac{E_3 A_3}{l_3} & -\cfrac{E_3 A_3}{l_3} \\ 0 & 0 & -\cfrac{E_3 A_3}{l_3} & \cfrac{E_3 A_3}{l_3} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} P_1^{(1)} \\ P_2^{(1)} + P_2^{(2)} \\ P_3^{(2)} + P_3^{(3)} \\ P_4^{(3)} \end{bmatrix} \end{equation} l1E1A1l1E1A100l1E1A1l1E1A1+l2E2A2l2E2A200l2E2A2l2E2A2+l3E3A3l3E3A300l3E3A3l3E3A3 u1u2u3u4 = P1(1)P2(1)+P2(2)P3(2)+P3(3)P4(3)

式(5)中的 P 1 ( 1 ) P_1^{(1)} P1(1) P 2 ( 1 ) + P 2 ( 2 ) P_2^{(1)} + P_2^{(2)} P2(1)+P2(2) P 3 ( 2 ) + P 3 ( 3 ) P_3^{(2)} + P_3^{(3)} P3(2)+P3(3) P 4 ( 3 ) P_4^{(3)} P4(3)就是节点1、2、3、4上的合成节点力,即

P 1 = P 1 ( 1 ) P 2 = P 2 ( 1 ) + P 2 ( 2 ) P 3 = P 3 ( 2 ) + P 3 ( 3 ) P 4 = P 4 ( 3 ) \begin{equation} P_1 = P_1^{(1)} \quad P_2 = P_2^{(1)} + P_2^{(2)} \quad P_3 = P_3^{(2)} + P_3^{(3)} \quad P_4 = P_4^{(3)} \end{equation} P1=P1(1)P2=P2(1)+P2(2)P3=P3(2)+P3(3)P4=P4(3)

由图1可知, P 1 = − 100 N P_1 = - 100 \rm{N} P1=100N P 2 = 0 N P_2 = 0 \rm{N} P2=0N P 3 = 50 N P_3 = 50 \rm{N} P3=50N P 4 P_4 P4为支座的支反力。将该结构的材料参数和几何尺寸带入式(5),可得

[ 4 × 1 0 4 − 4 × 1 0 4 0 0 − 4 × 1 0 4 1 × 1 0 5 − 6 × 1 0 4 0 0 − 6 × 1 0 4 1.8 × 1 0 5 − 1.2 × 1 0 5 0 0 − 1.2 × 1 0 5 1.2 × 1 0 5 ] [ u 1 u 2 u 3 u 4 ] = [ − 100 0 50 P 4 ] \begin{equation} \begin{bmatrix} 4 \times 10^4 & -4 \times 10^4 & 0 & 0\\ -4 \times 10^4 & 1 \times 10^5 & -6 \times 10^4 & 0 \\ 0 & -6 \times 10^4 & 1.8 \times 10^5 & -1.2 \times 10^5 \\ 0 & 0 & -1.2 \times 10^5 & 1.2 \times 10^5 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} - 100 \\ 0 \\ 50 \\ P_4 \end{bmatrix} \end{equation} 4×1044×104004×1041×1056×104006×1041.8×1051.2×105001.2×1051.2×105 u1u2u3u4 = 100050P4

1.4 处理边界条件并求解

图1所示结构的位移边界条件为: u 4 = 0 u_4 = 0 u4=0,代入上式可得

[ 4 × 1 0 4 − 4 × 1 0 4 0 0 − 4 × 1 0 4 1 × 1 0 5 − 6 × 1 0 4 0 0 − 6 × 1 0 4 1.8 × 1 0 5 − 1.2 × 1 0 5 0 0 − 1.2 × 1 0 5 1.2 × 1 0 5 ] [ u 1 u 2 u 3 0 ] = [ − 100 0 50 P 4 ] \begin{equation} \begin{bmatrix} 4 \times 10^4 & -4 \times 10^4 & 0 & 0\\ -4 \times 10^4 & 1 \times 10^5 & -6 \times 10^4 & 0 \\ 0 & -6 \times 10^4 & 1.8 \times 10^5 & -1.2 \times 10^5 \\ 0 & 0 & -1.2 \times 10^5 & 1.2 \times 10^5 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ 0 \end{bmatrix} = \begin{bmatrix} - 100 \\ 0 \\ 50 \\ P_4 \end{bmatrix} \end{equation} 4×1044×104004×1041×1056×104006×1041.8×1051.2×105001.2×1051.2×105 u1u2u30 = 100050P4

划去上述刚度矩阵的第4例和第4行,则有

[ 4 × 1 0 4 − 4 × 1 0 4 0 − 4 × 1 0 4 1 × 1 0 5 − 6 × 1 0 4 0 − 6 × 1 0 4 1.8 × 1 0 5 ] [ u 1 u 2 u 3 ] = [ − 100 0 50 ] \begin{equation} \begin{bmatrix} 4 \times 10^4 & -4 \times 10^4 & 0\\ -4 \times 10^4 & 1 \times 10^5 & -6 \times 10^4 \\ 0 & -6 \times 10^4 & 1.8 \times 10^5 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} - 100 \\ 0 \\ 50 \end{bmatrix} \end{equation} 4×1044×10404×1041×1056×10406×1041.8×105 u1u2u3 = 100050

求解得到

u 1 = − 4.58333 × 1 0 − 3 m u 2 = − 2.08333 × 1 0 − 3 m u 3 = − 4.16667 × 1 0 − 4 m } \begin{equation} \begin{aligned} \left.\begin{matrix} u_1 &= -4.58333 \times 10^{-3} \rm{m} \\ u_2 &= -2.08333 \times 10^{-3} \rm{m} \\ u_3 &= -4.16667 \times 10^{-4} \rm{m} \end{matrix}\right\} \end{aligned} \end{equation} u1u2u3=4.58333×103m=2.08333×103m=4.16667×104m

1.5 求支反力

求解得到支反力 P 4 P_4 P4

P 4 = − 1.2 × 1 0 5 × u 3 = 50 N \begin{equation} P_4 = - 1.2 \times 10^5 \times u_3 = 50N \end{equation} P4=1.2×105×u3=50N

1.6 求各个单元的其它力学量(应变、应力)

各个单元的应变

ε ( 1 ) = u 2 − u 1 l 1 = ( − 2.08333 + 4.58333 ) × 1 0 − 3 0.1 = 2.49997 × 1 0 − 2 m ε ( 2 ) = u 3 − u 2 l 2 = ( − 0.416667 + 2.08333 ) × 1 0 − 3 0.1 = 1.6667 × 1 0 − 2 m ε ( 3 ) = u 4 − u 3 l 3 = ( 0 + 4.16667 ) × 1 0 − 4 0.1 = 4.16667 × 1 0 − 3 m \begin{equation} \begin{aligned} \varepsilon^{(1)} &= \cfrac{u_2 - u_1}{l_1} = \cfrac{(-2.08333 + 4.58333) \times 10^{-3}}{0.1} = 2.49997 \times 10^{-2} \rm{m} \\ \varepsilon^{(2)} &= \cfrac{u_3 - u_2}{l_2} = \cfrac{(-0.416667 + 2.08333) \times 10^{-3}}{0.1} = 1.6667 \times 10^{-2} \rm{m} \\ \varepsilon^{(3)} &= \cfrac{u_4 - u_3}{l_3} = \cfrac{(0 + 4.16667) \times 10^{-4}}{0.1} = 4.16667 \times 10^{-3} \rm{m} \end{aligned} \end{equation} ε(1)ε(2)ε(3)=l1u2u1=0.1(2.08333+4.58333)×103=2.49997×102m=l2u3u2=0.1(0.416667+2.08333)×103=1.6667×102m=l3u4u3=0.1(0+4.16667)×104=4.16667×103m

各个单元的应力

σ ( 1 ) = E 1 ε ( 1 ) = 4.999 × 1 0 3 P a σ ( 2 ) = E 2 ε ( 2 ) = 3.3333 × 1 0 3 P a σ ( 3 ) = E 3 ε ( 3 ) = 8.3333 × 1 0 2 P a \begin{equation} \begin{aligned} \sigma^{(1)} &= E_1 \varepsilon^{(1)} = 4.999 \times 10^{3} \rm{Pa} \\ \sigma^{(2)} &= E_2 \varepsilon^{(2)} = 3.3333 \times 10^{3} \rm{Pa} \\ \sigma^{(3)} &= E_3 \varepsilon^{(3)} = 8.3333 \times 10^{2} \rm{Pa} \end{aligned} \end{equation} σ(1)σ(2)σ(3)=E1ε(1)=4.999×103Pa=E2ε(2)=3.3333×103Pa=E3ε(3)=8.3333×102Pa

这样可以得到一种直观的有限元分析思路:

  • 复杂的几何和受力对象划分为一个一个形状比较简单的标准“构件”,称为单元
  • 给出单元节点的位移和受力描述,构件单元刚度矩阵
  • 通过单元与单元之间的节点连接关系进行单元的组装,得到结构的整体刚度矩阵
  • 根据位移约束和受力状态,处理边界条件,并进行求解

图3 有限元分析的基本流程图示

图3 有限元分析的基本流程图示

参考

  1. 曾攀. 有限元分析基础教程[M]. 北京: 清华大学出版社, 2008.
  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值