单元的描述包括单元的几何和节点描述、位移场、应变场、应力场、势能,也就是要充分描述问题的三大类变量(位移、应变、应力)以及三大类方程(平衡方程、几何方程、物理方程)来计算单元的势能,然后通过最小势能原理或虚功原理来得到单元的方程,
实际上,单元内位移场的描述就是其试函数的选取
1 单元的几何和节点描述
上图为一个在局部坐标系(local coordinate system)中的杆单元(bar element),由于有两个端节点(Node 1和Node 2),则基本变量为节点位移(向量)矩阵 q e \mathbf{q}^e qe
q e = [ u 1 u 2 ] = [ u 1 u 2 ] T \begin{equation} \begin{aligned} \mathbf{q}^e = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^{T} \end{aligned} \end{equation} qe=[u1u2]=[u1u2]T
将每一个描述物体位置状态的独立变量叫做一个自由度(DOF, degree of freedom)
上述的节点位移为两个自由度。节点力(向量)列阵 P e \mathbf{P}^e Pe
P e = [ P 1 P 2 ] = [ P 1 P 2 ] T \begin{equation} \begin{aligned} \mathbf{P}^e = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} = \begin{bmatrix} P_1 & P_2 \end{bmatrix}^{T} \end{aligned} \end{equation} Pe=[P1P2]=[P1P2]T
若该单元承受有沿轴向的分布载荷,可以将其等效到节点上。
利用函数插值、几何方程、物理方程以及势能计算公式,可以将单元的所有力学参量(即场变量: u ( x ) u(x) u(x)、 ε ( x ) \varepsilon(x) ε(x)、 σ ( x ) \sigma(x) σ(x)和 ∏ e \prod^e ∏e)用节点位移列阵 q e \mathbf{q}^e qe及相关的插值函数表示。
2 单元位移场的表达
设该单元的位移场为 u ( x ) u(x) u(x),由Taylor级数,其可以表示为
u ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ \begin{equation} \begin{aligned} u(x) = a_0 + a_1 x + a_2 x^2 + \cdots \end{aligned} \end{equation} u(x)=a0+a1x+a2x2+⋯
该函数将由两个端节点的位移 u 1 u_1 u1和 u 2 u_2 u2来进行插值确定,可取式(3)的前两项来作为该单元的位移插值模式(interpolation model)
u ( x ) = a 0 + a 1 x \begin{equation} \begin{aligned} u(x) = a_0 + a_1 x \end{aligned} \end{equation} u(x)=a0+a1x
式中: a 0 a_0 a0和 a 1 a_1 a1为待定系数(unknows)。
单元节点条件为
u ( x ) ∣ x = 0 = u 1 u ( x ) ∣ x = l e = u 2 \begin{equation} \begin{aligned} u(x) |_{x=0} &= u_1 \\ u(x) |_{x=l^e} &= u_2 \end{aligned} \end{equation} u(x)∣x=0u(x)∣x=le=u1=u2
代入式(4)中可求得 a 0 a_0 a0和 a 1 a_1 a1为
a 0 = u 1 a 1 = u 2 − u 1 l e \begin{equation} \begin{aligned} a_0 &= u_1 \\ a_1 &= \cfrac{u_2 - u_1}{l^e} \end{aligned} \end{equation} a0a1=u1=leu2−u1
即有
u ( x ) = u 1 + u 2 − u 1 l e x = ( 1 − x l e ) u 1 + x l e u 2 = N ( x ) ⋅ q e \begin{equation} \begin{aligned} u(x) &= u_1 + \cfrac{u_2 - u_1}{l^e} x \\ &= (1 - \cfrac{x}{l^e}) u_1 + \cfrac{x}{l^e} u_2 \\ &= \mathbf{N}(x) \cdot \mathbf{q}^e \end{aligned} \end{equation} u(x)=u1+leu2−u1x=(1−lex)u1+lexu2=N(x)⋅qe
式中: N ( x ) \mathbf{N}(x) N(x)为形状函数矩阵(shape function matrix),为
N ( x ) = [ 1 − x l e x l e ] \begin{equation} \begin{aligned} \mathbf{N}(x) = \begin{bmatrix} 1 - \cfrac{x}{l^e} & \cfrac{x}{l^e} \end{bmatrix} \end{aligned} \end{equation} N(x)=[1−lexlex]
3 单元应变场的表达
由弹性力学的几何方程,1D问题的应变为
ε ( x ) = d u ( x ) d x = [ − 1 l e 1 l e ] [ u 1 u 2 ] = B ( x ) ⋅ q e \begin{equation} \begin{aligned} \varepsilon(x) &= \cfrac{\mathrm{d}u(x)}{\mathrm{d} x} \\ &= \begin{bmatrix} - \cfrac{1}{l^e} & \cfrac{1}{l^e} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ &= \mathbf{B}(x) \cdot \mathbf{q}^e \end{aligned} \end{equation} ε(x)=dxdu(x)=[−le1le1][u1u2]=B(x)⋅qe
其中
B ( x ) = d N ( x ) d x = [ − 1 l e 1 l e ] \begin{equation} \begin{aligned} \mathbf{B}(x) &= \cfrac{\mathrm{d} \mathbf{N}(x)}{\mathrm{d} x} \\ &= \begin{bmatrix} - \cfrac{1}{l^e} & \cfrac{1}{l^e} \end{bmatrix} \end{aligned} \end{equation} B(x)=dxdN(x)=[−le1le1]
称为应变矩阵(strain-displacement matrix)。
4 单元应力场的表达
由弹性力学的物理方程,1D问题的应力为
σ ( x ) = E e ε ( x ) = E e ⋅ B ( x ) ⋅ q e = S ( x ) ⋅ q e \begin{equation} \begin{aligned} \sigma(x) &= E^e \varepsilon(x) \\ &= E^e \cdot \mathbf{B}(x) \cdot \mathbf{q}^e \\ &= \mathbf{S}(x) \cdot \mathbf{q}^e \end{aligned} \end{equation} σ(x)=Eeε(x)=Ee⋅B(x)⋅qe=S(x)⋅qe
其中
S ( x ) = E e ⋅ B ( x ) = [ − E e l e E e l e ] \begin{equation} \begin{aligned} \mathbf{S}(x) &= E^e \cdot \mathbf{B}(x) \\ &= \begin{bmatrix} - \cfrac{E^e}{l^e} & \cfrac{E^e}{l^e} \end{bmatrix} \end{aligned} \end{equation} S(x)=Ee⋅B(x)=[−leEeleEe]
称为应力矩阵(stress-displacement matrix)。
5 单元势能的表达
基于式(9)和式(10),计算得到单元势能的表达式为
∏ e = U e − W e = 1 2 ∫ Ω e σ ( x ) ⋅ ε ( x ) d Ω − ( P 1 e ⋅ u 1 + P 2 e ⋅ u 2 ) = 1 2 ∫ 0 l e S ( x ) ⋅ q e ⋅ B ( x ) ⋅ q e ⋅ A e d x − ( P 1 e ⋅ u 1 + P 2 e ⋅ u 2 ) = 1 2 ∫ Ω e q e T ⋅ S T ( x ) ⋅ B ( x ) ⋅ q e ⋅ A e d x − ( P 1 e ⋅ u 1 + P 2 e ⋅ u 2 ) = 1 2 [ u 1 u 2 ] [ − E e l e E e l e ] [ − 1 l e 1 l e ] [ u 1 u 2 ] ⋅ A e ⋅ l e − [ P 1 e P 2 e ] [ u 1 u 2 ] = 1 2 [ u 1 u 2 ] [ E e A e l e − E e A e l e − E e A e l e E e A e l e ] [ u 1 u 2 ] − [ P 1 e P 2 e ] [ u 1 u 2 ] = 1 2 q e T ⋅ K e ⋅ q e − P e T ⋅ q e \begin{equation} \begin{aligned} \prod^e &= U^e - W^e \\ &= \cfrac{1}{2} \int_{\Omega^e} \sigma(x) \cdot \varepsilon(x) \mathrm{d} \Omega - (P_1^e \cdot u_1 + P_2^e \cdot u_2) \\ &= \cfrac{1}{2} \int_{0}^{l^e} \mathbf{S}(x) \cdot \mathbf{q}^e \cdot \mathbf{B}(x) \cdot \mathbf{q}^e \cdot A^e \mathrm{d} x - (P_1^e \cdot u_1 + P_2^e \cdot u_2) \\ &= \cfrac{1}{2} \int_{\Omega^e} \mathbf{q}^{eT} \cdot \mathbf{S}^T(x) \cdot \mathbf{B}(x) \cdot \mathbf{q}^e \cdot A^e \mathrm{d} x - (P_1^e \cdot u_1 + P_2^e \cdot u_2)\\ &= \cfrac{1}{2} \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} - \cfrac{E^e}{l^e} \\ \cfrac{E^e}{l^e} \end{bmatrix} \begin{bmatrix} - \cfrac{1}{l^e} & \cfrac{1}{l^e} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot A^e \cdot l^e - \begin{bmatrix} P_1^e & P_2^e \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ &= \cfrac{1}{2} \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \cfrac{E^e A^e}{l^e} & - \cfrac{E^e A^e}{l^e} \\ - \cfrac{E^e A^e}{l^e} & \cfrac{E^e A^e}{l^e} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{bmatrix} P_1^e & P_2^e \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ &= \cfrac{1}{2} \mathbf{q}^{eT} \cdot \mathbf{K}^e \cdot \mathbf{q}^e - \mathbf{P}^{eT} \cdot \mathbf{q}^e \end{aligned} \end{equation} ∏e=Ue−We=21∫Ωeσ(x)⋅ε(x)dΩ−(P1e⋅u1+P2e⋅u2)=21∫0leS(x)⋅qe⋅B(x)⋅qe⋅Aedx−(P1e⋅u1+P2e⋅u2)=21∫ΩeqeT⋅ST(x)⋅B(x)⋅qe⋅Aedx−(P1e⋅u1+P2e⋅u2)=21[u1u2] −leEeleEe [−le1le1][u1u2]⋅Ae⋅le−[P1eP2e][u1u2]=21[u1u2] leEeAe−leEeAe−leEeAeleEeAe [u1u2]−[P1eP2e][u1u2]=21qeT⋅Ke⋅qe−PeT⋅qe
上式中第3行到第4行的推导并不是运用的矩阵转置公式$ (M \cdot N)^T = N^T \cdot M^T ,而是因为 ,而是因为 ,而是因为 \mathbf{S}(x) 和 和 和 \mathbf{q}(x)^e $均为单位向量,可以直接相互转置和调换顺序
式中: K e \mathbf{K}^e Ke为单元刚度矩阵(stiffness matrix of element),即
K e = [ E e A e l e − E e A e l e − E e A e l e E e A e l e ] = E e A e l e [ 1 − 1 − 1 1 ] \begin{equation} \begin{aligned} \mathbf{K}^e &= \begin{bmatrix} \cfrac{E^e A^e}{l^e} & - \cfrac{E^e A^e}{l^e} \\ - \cfrac{E^e A^e}{l^e} & \cfrac{E^e A^e}{l^e} \end{bmatrix} \\ &= \cfrac{E^e A^e}{l^e} \begin{bmatrix} 1 & - 1 \\ - 1 & 1 \end{bmatrix} \end{aligned} \end{equation} Ke= leEeAe−leEeAe−leEeAeleEeAe =leEeAe[1−1−11]
P e \mathbf{P}^e Pe为节点力列阵(nodal force vector),即
P e = [ P 1 e P 2 e ] \begin{equation} \begin{aligned} \mathbf{P}^e &= \begin{bmatrix} P_1^e \\ P_2^e \end{bmatrix} \\ \end{aligned} \end{equation} Pe=[P1eP2e]
6 单元刚度方程
对式(13)取极小值,可以得到单元刚度方程(stiffness equation of element)
K e ( 2 × 2 ) ⋅ q e ( 2 × 1 ) = P e ( 2 × 1 ) \begin{equation} \begin{aligned} \underset{(2 \times 2)}{\mathbf{K}^e} \cdot \underset{(2 \times 1)}{\mathbf{q}^e} = \underset{(2 \times 1)}{\mathbf{P}^e} \end{aligned} \end{equation} (2×2)Ke⋅(2×1)qe=(2×1)Pe
7 变截面杆单元的推导
上图为一受轴载荷的线性变截面杆件,两端的截面积为 A 1 A_1 A1和 A 2 A_2 A2,长度为 l l l,材料的弹性模量为 E E E
建立的变截面杆单元如图2(b)所示,其中横截面积为
A ( x ) = ( 1 − x l ) A 1 + x l A 2 \begin{equation} \begin{aligned} A(x) = (1 - \cfrac{x}{l})A_1 + \cfrac{x}{l}A_2 \end{aligned} \end{equation} A(x)=(1−lx)A1+lxA2
其节点位移列阵为 q e = [ u 1 u 2 ] T \mathbf{q}^e = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^T qe=[u1u2]T,节点力列阵为 P e = [ P 1 P 2 ] T \mathbf{P}^e = \begin{bmatrix} P_1 & P_2 \end{bmatrix}^T Pe=[P1P2]T
由于为两个节点,故单元的位移模式取为
u ( x ) = a 0 + a 1 x = N ( x ) ⋅ q e \begin{equation} \begin{aligned} u(x) = a_0 + a_1 x = \mathbf{N}(x) \cdot \mathbf{q}^e \end{aligned} \end{equation} u(x)=a0+a1x=N(x)⋅qe
得到单元的形状函数矩阵为
N ( x ) = [ ( 1 − x l ) x l ] \begin{equation} \begin{aligned} \mathbf{N}(x) = \begin{bmatrix} (1 - \cfrac{x}{l}) & \cfrac{x}{l} \end{bmatrix} \end{aligned} \end{equation} N(x)=[(1−lx)lx]
由几何方程,得到该单元的应变矩阵为
B ( x ) = [ − 1 l 1 l ] \begin{equation} \begin{aligned} \mathbf{B}(x) = \begin{bmatrix} - \cfrac{1}{l} & \cfrac{1}{l} \end{bmatrix} \end{aligned} \end{equation} B(x)=[−l1l1]
该单元的应力矩阵为
S ( x ) = E ⋅ B ( x ) = [ − E l E l ] \begin{equation} \begin{aligned} \mathbf{S}(x) = E \cdot \mathbf{B}(x) = \begin{bmatrix} - \cfrac{E}{l} & \cfrac{E}{l} \end{bmatrix} \end{aligned} \end{equation} S(x)=E⋅B(x)=[−lElE]
该单元刚度方程为
K e ( 2 × 2 ) ⋅ q e ( 2 × 1 ) = P e ( 2 × 1 ) \begin{equation} \begin{aligned} \underset{(2 \times 2)}{\mathbf{K}^e} \cdot \underset{(2 \times 1)}{\mathbf{q}^e} = \underset{(2 \times 1)}{\mathbf{P}^e} \end{aligned} \end{equation} (2×2)Ke⋅(2×1)qe=(2×1)Pe
其中单元刚度矩阵为
K e ( 2 × 2 ) = ∫ Ω S T ( x ) ⋅ B ( x ) ⋅ d Ω = ∫ 0 l [ − E l E l ] [ − 1 l 1 l ] ⋅ A ( x ) d x = ∫ 0 l E l 2 [ 1 − 1 − 1 1 ] ⋅ [ ( 1 − x l ) A 1 + x l A 2 ] d x = E l 2 [ 1 − 1 − 1 1 ] ∫ 0 l [ ( 1 − x l ) A 1 + x l A 2 ] d x = E l 2 [ 1 − 1 − 1 1 ] [ ( x − x 2 2 l ) A 1 + x 2 2 l A 2 ] ∣ 0 l = E l 2 [ 1 − 1 − 1 1 ] [ ( l − l 2 ) A 1 + l 2 A 2 ] = E ( A 1 + A 2 ) 2 l [ 1 − 1 − 1 1 ] \begin{equation} \begin{aligned} \underset{(2 \times 2)}{\mathbf{K}^e} &= \int_\Omega \mathbf{S}^T(x) \cdot \mathbf{B}(x) \cdot \mathrm{d} \Omega \\ &= \int_0^l \begin{bmatrix} - \cfrac{E}{l} \\ \cfrac{E}{l} \end{bmatrix} \begin{bmatrix} - \cfrac{1}{l} & \cfrac{1}{l} \end{bmatrix} \cdot A(x) \mathrm{d} x \\ &= \int_0^l \cfrac{E}{l^2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot [(1 - \cfrac{x}{l})A_1 + \cfrac{x}{l}A_2] \mathrm{d} x \\ &= \cfrac{E}{l^2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \int_0^l [(1 - \cfrac{x}{l})A_1 + \cfrac{x}{l}A_2] \mathrm{d} x \\ &= \cfrac{E}{l^2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} [(x - \cfrac{x^2}{2l})A_1 + \cfrac{x^2}{2l} A_2] \Big|_0^l \\ &= \cfrac{E}{l^2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} [(l - \cfrac{l}{2})A_1 + \cfrac{l}{2} A_2] \\ &= \cfrac{E(A_1 + A_2)}{2l} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \end{aligned} \end{equation} (2×2)Ke=∫ΩST(x)⋅B(x)⋅dΩ=∫0l −lElE [−l1l1]⋅A(x)dx=∫0ll2E[1−1−11]⋅[(1−lx)A1+lxA2]dx=l2E[1−1−11]∫0l[(1−lx)A1+lxA2]dx=l2E[1−1−11][(x−2lx2)A1+2lx2A2] 0l=l2E[1−1−11][(l−2l)A1+2lA2]=2lE(A1+A2)[1−1−11]
可以看到,与等截面杆单元相比(式(14)),该线性变截面单元的截面取了平均面积。
8 多连杆的整体刚度矩阵
上图为局部坐标系中的一维三连杆结构,故每个杆件的单元刚度方程分别为
K ( 1 ) ⋅ q ( 1 ) = P ( 1 ) [ K 11 ( 1 ) K 12 ( 1 ) K 21 ( 1 ) K 22 ( 1 ) ] ⋅ [ u 1 u 2 ] = [ P 1 ( 1 ) P 2 ( 1 ) ] \begin{equation} \begin{aligned} \mathbf{K}^{(1)} \cdot \mathbf{q}^{(1)} &= \mathbf{P}^{(1)} \\ \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} \\ K_{21}^{(1)} & K_{22}^{(1)} \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} &= \begin{bmatrix} P_{1}^{(1)} \\ P_{2}^{(1)} \end{bmatrix} \end{aligned} \end{equation} K(1)⋅q(1)[K11(1)K21(1)K12(1)K22(1)]⋅[u1u2]=P(1)=[P1(1)P2(1)]
K ( 2 ) ⋅ q ( 2 ) = P ( 2 ) [ K 22 ( 2 ) K 23 ( 2 ) K 32 ( 2 ) K 33 ( 2 ) ] ⋅ [ u 2 u 3 ] = [ P 2 ( 2 ) P 3 ( 2 ) ] \begin{equation} \begin{aligned} \mathbf{K}^{(2)} \cdot \mathbf{q}^{(2)} &= \mathbf{P}^{(2)} \\ \begin{bmatrix} K_{22}^{(2)} & K_{23}^{(2)} \\ K_{32}^{(2)} & K_{33}^{(2)} \end{bmatrix} \cdot \begin{bmatrix} u_{2} \\ u_{3} \end{bmatrix} &= \begin{bmatrix} P_{2}^{(2)} \\ P_{3}^{(2)} \end{bmatrix} \end{aligned} \end{equation} K(2)⋅q(2)[K22(2)K32(2)K23(2)K33(2)]⋅[u2u3]=P(2)=[P2(2)P3(2)]
K ( 3 ) ⋅ q ( 3 ) = P ( 3 ) [ K 33 ( 3 ) K 34 ( 3 ) K 43 ( 3 ) K 44 ( 3 ) ] ⋅ [ u 3 u 4 ] = [ P 3 ( 3 ) P 4 ( 3 ) ] \begin{equation} \begin{aligned} \mathbf{K}^{(3)} \cdot \mathbf{q}^{(3)} &= \mathbf{P}^{(3)} \\ \begin{bmatrix} K_{33}^{(3)} & K_{34}^{(3)} \\ K_{43}^{(3)} & K_{44}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} u_{3} \\ u_{4} \end{bmatrix} &= \begin{bmatrix} P_{3}^{(3)} \\ P_{4}^{(3)} \end{bmatrix} \end{aligned} \end{equation} K(3)⋅q(3)[K33(3)K43(3)K34(3)K44(3)]⋅[u3u4]=P(3)=[P3(3)P4(3)]
组装成整体刚度方程为
K A l l ⋅ q A l l = P A l l [ K 11 ( 1 ) K 12 ( 1 ) 0 0 K 21 ( 1 ) K 22 ( 1 ) + K 22 ( 2 ) K 23 ( 2 ) 0 0 K 32 ( 2 ) K 33 ( 2 ) + K 33 ( 3 ) K 34 ( 3 ) 0 0 K 43 ( 3 ) K 44 ( 3 ) ] ⋅ [ u 1 u 2 u 3 u 4 ] = [ P 1 ( 1 ) P 2 ( 1 ) + P 2 ( 2 ) P 3 ( 2 ) + P 3 ( 3 ) P 4 ( 3 ) ] [ K 11 ( 1 ) K 12 ( 1 ) 0 0 K 21 ( 1 ) K 22 ( 1 ) + K 22 ( 2 ) K 23 ( 2 ) 0 0 K 32 ( 2 ) K 33 ( 2 ) + K 33 ( 3 ) K 34 ( 3 ) 0 0 K 43 ( 3 ) K 44 ( 3 ) ] ⋅ [ u 1 u 2 u 3 u 4 ] = [ P 1 P 2 P 3 P 4 ] \begin{equation} \begin{aligned} \mathbf{K}^{All} \cdot \mathbf{q}^{All} &= \mathbf{P}^{All} \\ \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0\\ K_{21}^{(1)} & K_{22}^{(1)} + K_{22}^{(2)} & K_{23}^{(2)} & 0 \\ 0 & K_{32}^{(2)} & K_{33}^{(2)} + K_{33}^{(3)} & K_{34}^{(3)} \\ 0 & 0 & K_{43}^{(3)} & K_{44}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} &= \begin{bmatrix} P_{1}^{(1)} \\ P_{2}^{(1)} + P_{2}^{(2)} \\ P_{3}^{(2)} + P_{3}^{(3)} \\ P_{4}^{(3)} \end{bmatrix} \\ \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0\\ K_{21}^{(1)} & K_{22}^{(1)} + K_{22}^{(2)} & K_{23}^{(2)} & 0 \\ 0 & K_{32}^{(2)} & K_{33}^{(2)} + K_{33}^{(3)} & K_{34}^{(3)} \\ 0 & 0 & K_{43}^{(3)} & K_{44}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} &= \begin{bmatrix} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \end{bmatrix} \end{aligned} \end{equation} KAll⋅qAll K11(1)K21(1)00K12(1)K22(1)+K22(2)K32(2)00K23(2)K33(2)+K33(3)K43(3)00K34(3)K44(3) ⋅ u1u2u3u4 K11(1)K21(1)00K12(1)K22(1)+K22(2)K32(2)00K23(2)K33(2)+K33(3)K43(3)00K34(3)K44(3) ⋅ u1u2u3u4 =PAll= P1(1)P2(1)+P2(2)P3(2)+P3(3)P4(3) = P1P2P3P4
整体刚度矩阵的组合方式如下图所示
参考
- 曾攀. 有限元分析基础教程[M]. 北京: 清华大学出版社, 2008.