
Scanpy_3 多个样本的单细胞分析流程(scvi)
如果你需要使用深度学习库和框架来处理大规模的计算任务,建议使用专门的显卡(例如 NVIDIA 的 GeForce 或 Quadro 系列显卡),或者使用云计算服务来获得更高的计算能力和更大的显存。在单细胞RNA测序数据分析中,批次效应是一个常见的问题,它可能导致不同批次之间的细胞分布存在差异,影响细胞类型的鉴定和分析。该流程使用scvi方法整合:scvi采用了一种基于深度生成模型的算法来降维和批次效应校正,相比传统的PCA或t-SNE等降维方法,该算法可以更好地处理单细胞RNA测序数据中的噪声和批次效应。






