Scanpy_1 单个样本的单细胞分析流程

这是一个关于如何使用Scanpy进行单细胞分析的教程,包括预处理、聚类和寻找标记基因三个步骤。内容来源于sanbomics的YouTube视频和GitHub代码,适合处理单个样本的数据,不涉及数据整合和去批次效应。
摘要由CSDN通过智能技术生成

Scanpy_1 单个样本的单细胞分析流程

代码说明:

#设置路径
!pwd #当前路径
!mkdir write
import scanpy as sc
import pandas as pd
import numpy as np

sc.settings.verbosity = 3             # verbosity: errors (0), warnings (1), info (2), hints (3)
sc.logging.print_header()
sc.settings.set_figure_params(dpi=80, facecolor='white')
#声明h5ad用于存储分析结果:
results_file = 'write/pbmc3k.h5ad'
adata = sc.read_10x_mtx(
    '/Users/panqiu/Downloads/00/', # `.mtx`文件所在的目录,注意改成自己的文件路径
     var_names='gene_symbols', # 用 gene 作为var
     cache=True) # 开启缓存读写

# 消除重复的列
adata.var_names_make_unique()
"""
注意cache=Trure
... writing an h5ad cache file to speedup reading next time
下次读取就不会从count matrix读, 会直接从cache目录下的h5ad文件读(更快)
""" 

Preprocessing


sc.pp.filter_cells(adata, min_genes=200) #get rid of cells with fewer than 200 genes
sc.pp.filter_genes(adata, min_cells=3) #get rid of genes that are found in fewer than 3 cells

#IF YOU ARE DOING MOUSE YOU MIGHT NEED TO CHANGE MT- to Mt. Always double check you actually labeld MT
adata.var['mt'] = adata.var_names.str.startswith('MT-')  # annotate the group of mitochondrial genes as 'mt'。注意人的样本用'MT-',小鼠的样本用'mt-'
adata.var.mt.value_counts()#查看有几个mt基因,或者用sum(adata.var['mt'])
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值