计算机基础(一):二进制详解

本文介绍了二进制为何被用于计算机表示,详细解释了二进制数的概念,包括位权和基数,并探讨了移位运算与乘除的关系。此外,文章还重点讨论了计算机中负数的补数表示法,以及算数右移和逻辑右移的区别,为理解计算机底层原理提供了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二进制

我们都知道,计算机的底层都是使用二进制数据进行数据流传输的,那么为什么会使用二进制表示计算机呢?或者说,什么是二进制数呢?在拓展一步,如何使用二进制进行加减乘除?二进制数如何表示负数呢?本文将一一为你揭晓。

为什么用二进制表示

我们大家知道,计算机内部是由IC电子元件组成的,其中 CPU内存 也是 IC 电子元件的一种,CPU和内存图如下

CPU 和 内存使用IC电子元件作为基本单元,IC电子元件有不同种形状,但是其内部的组成单元称为一个个的引脚。有人说CPU 和 内存内部都是超大规模集成电路,其实IC 就是集成电路(Integrated Circuit)。

IC元件两侧排列的四方形块就是引脚,IC的所有引脚,只有两种电压: 0V5V,IC的这种特性,也就决定了计算机的信息处理只能用 0 和 1 表示,也就是二进制来处理。一个引脚可以表示一个 0 或 1 ,所以二进制的表示方式就变成 0、1、10、11、100、101等,虽然二进制数并不是专门为 引脚 来设计的,但是和 IC引脚的特性非常吻合。

计算机的最小集成单位为 ,也就是 比特(bit),二进制数的位数一般为 8位、16位、32位、64位,也就是 8 的倍数,为什么要跟 8 扯上关系呢? 因为在计算机中,把 8 位二进制数称为 一个字节, 一个字节有 8 位,也就是由 8个bit构成。

为什么1个字节等于8位呢?因为 8 位能够涵盖所有的字符编码,这个记住就可以了。

字节是最基本的计量单位,位是最小单位。

用字节处理数据时,如果数字小于存储数据的字节数 ( = 二进制的位数),那么高位就用 0 填补,高位和数学的数字表示是一样的,**左侧表示高位,右侧表示低位。**比如 这个六位数用二进制数来表示就是 100111,只有6位,高位需要用 0 填充,填充完后是 00100111,占一个字节,如果用 16 位表示 就是 0000 0000 0010 0111占用两个字节。

我们一般口述的 32 位和 64位的计算机一般就指的是处理位数,32 位一次可以表示 4个字节࿰

二进制图文详解 二进制Binary 2进制 逢二进的计数规则。 在计算机内部,切数据都是2进制的!! 2进制的数字 补码 补码本质是种解决负数问题的算法。 1. 将数据的半当做负数使用。 2. 补码在内存中是2进制的,显示的时候为10进制。 - Java利用算法支持了补码计算: - Integer.parseInt() - Integer.toString() 3. 补码的缺点: - 不支持超范围计算 - 超范围计算自动溢出 4. 解决补码的缺点:采用更大范围(更多位数)补码 Java是如何计算 -2-1 的 补码的规律 1. 最大值的规律:最高位0 剩下全是1 - int类型:个0,31个1 - long类型:个0,63个1 2. 最小值的规律:最高位1 剩下全是0 - int类型:个1,31个0 - long类型:个1,63个0 3. 负数的最高位是1, 正数最高位是0 - 最高位做为识别正数和负数的标志位:称为符号位 - 注意:符号位不是用来表示正负号的!!! 4. -1 的规律:所有位都是1!! 5. 溢出是有规律的! 是个周期性计算结果。 - 最大值+1 = 最小值 6. 补码的对称现象:-n = ~n + 1 案例: int max = Integer.MAX_VALUE; System.out.println(Integer.toBinaryString(max)); int min = Integer.MIN_VALUE; System.out.println(Integer.toBinaryString(min)); long lmax = Long.MAX_VALUE; System.out.println(Long.toBinaryString(lmax)); long lmin = Long.MIN_VALUE; System.out.println(Long.toBinaryString(lmin)); //-1的规律 int n = -1; System.out.println(Integer.toBinaryString(n)); long l = -1L; System.out.println(Long.toBinaryString(l)); //最大值+1溢出得到最小值 // 推论:Java中的int数字是按照补码圆环排列的 int m = Integer.MAX_VALUE+1; System.out.println(m);//最小值 //个数的溢出测试: n = 345; m = n + Integer.MAX_VALUE+1; System.out.println(m);//负数 m = n + Integer.MAX_VALUE+1+ Integer.MAX_VALUE; System.out.println(m);//344 正数 m = n - (Integer.MAX_VALUE+1+ Integer.MAX_VALUE+1); System.out.println(m);//345 正数 经典面试题1 正数的溢出结果是负数(错误!!!) 经典面试题2 int i = Integer.MAX_VALUE+1; System.out.println( Integer.toBinaryString(i)); 选择运行结果(D): A. 11111111111111111111111111111111 B. 1111111111111111111111111111111 C. 01111111111111111111111111111111 D. 10000000000000000000000000000000 经典面试题3 System.out.println(~-55); 如上代码的运算结果: ( 54 ) System.out.println(~-230); 如上代码的运算结果: ( 229 ) System.out.println(~55); 如上代码的运算结果: ( -56 ) 16进制 16进制是2进制的简写形式 2进制运算 1. ~ 取反运算 2. & 与运算(逻辑乘法) 运算规则: 1 & 1 = 1 1 & 0 = 0 0 & 1 = 0 0 & 0 = 0 与运算用途: n: 00010100 11010111 01010001 11101010 m: 00000000 00000000 00000000 11111111 n&m-------------------------------------- k 00000000 00000000 00000000 11101010 如上的与运算是个有意义的运算: 意义在于k是数字n的低8位数字!!m是个分割模板,称为Mask(面具) 案例: int n = 0x14d751ea;//16简写(缩写)的2进制 int m = 0xff;//255 int k = n&m; //输出 n m k 的2进制 3. | 或运算(逻辑加法) 规则: 0 | 0 = 0 1 | 0 = 1 0 | 1 = 1 1 | 1 = 1 用途: n = 00000000 00000000 00000000 10110101 m = 00000000 00000000 11011011 00000000 n|m ------------------------------------ k 00000000 00000000 11011011 10110101 //判断是否读取到文件的末尾: ch1 00000000 00000000 00000000 10110101 ch2 00000000 00000000 00000000 11001111 ch3 11111111 11111111 11111111 11111111 ch4 11111111 11111111 11111111 11111111 ch1|ch2|ch3|ch4 ------------------------- -1 11111111 11111111 11111111 11111111 if(ch1|ch2|ch3|ch4 >> 逻辑右移动运算 将2进制数的每个位向右移动,左侧空白补充0 规则: n: 00010100 11010111 01010001 11101010 m = n>>>1; m: 000010100 11010111 01010001 1110101 m = n>>>8; m: 00000000 00010100 11010111 01010001 案例: int n = 0x14d751ea; int m = n>>>1; //按照2进制输出n 和 m m = n>>>8; //按照2进制输出 m k = (n>>>8)&0xff; //按照2进制输出 k > 思考:将个int拆分为4个8位数 d1 d2 d3 d4? 5. >> 数学右移位运算 复习:移动小数点计算 个整数 312331. 将小数点先左移动次 31233.1 原始数据除以10 将小数点先左移动2次 3123.31 原始数据除以100 如果看做小数点不动,数字向右移动次,原始数据除以10 ... 2进制数有同样现象:数字向右移动次,原数据除以2 n = 00000000 00000000 00000000 01010000 m = n>>3; m = 00000000000 00000000 00000000 01010 案例: n = 80;// 0x50 m = n>>3;// n<>` 数学右移位,高位补充规则 - 正数补0 负数补1,结果满足数学规则 - 如果溢出,向小方向取整 2. `>>>` 是逻辑右移位:高位只补充0 提示:如果数学计算 使用 `>>` 6. << 左移位运算 将2进制数位每位向左移动,右侧填充0 拼接int d1 = 00000000 00000000 00000000 11101010 d2 = 00000000 00000000 00000000 01010001 d3 = 00000000 00000000 00000000 11010111 d4 = 00000000 00000000 00000000 00010100 d4<<24 00010100 00000000 00000000 00000000 d3<<16 00000000 11010111 00000000 00000000 d2<> 数学右移位 面试题目: 如何优化 n*8 ? 答案: n<<3 提示: 被乘数定是 2 的n次幂 如何优化 n%8 ? 答案: n&(8-1) 如何优化 n%4 ? 答案: n&(4-1) 如何优化 n ? 答案: n&(16-1) n%0xf 提示: 除数定是 2 的n次幂
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值