题目描述
剑指 Offer 40. 最小的k个数
难度简单223收藏分享切换为英文接收动态反馈
输入整数数组 arr
,找出其中最小的 k
个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
示例 1:
输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]
示例 2:
输入:arr = [0,1,2,1], k = 1
输出:[0]
限制:
0 <= k <= arr.length <= 10000
0 <= arr[i] <= 10000
测试用例
- 功能测试(输入的数组中有相同的数字;输入的数组没有相同的数字)
- 边界值测试(输入的k等于1或者数组的长度)
- 特殊输入测试(k 小于 1; k 大于数组的长度;指向数组的指针为空指针)
题目考点
-
考察应聘者对时间复杂度的理解。应聘者每想出一种解法,面试官都期待他能分析出这种解法的时间复杂度是多少。
-
如果可以改变数组顺序,那么就是考察Partition函数,考察快排函数的基础。
-
如果不可以改变数组顺序,那么就是考察对堆、红黑树等数据结构的理解。
解题思路
一、用快排最最最高效解决 TopK 问题:O(N)
注意找前 K 大/前 K 小问题不需要对整个数组进行 O(NlogN) 的排序!
例如本题,直接通过快排切分排好第 K 小的数(下标为 K-1),那么它左边的数就是比它小的另外 K-1 个数啦~
下面代码给出了详细的注释,没啥好啰嗦的,就是快排模版要记牢哈~
class Solution {
public int[] getLeastNumbers(int[] arr, int k) {
if (k == 0 || arr.length == 0) {
return new int[0];
}
// 最后一个参数表示我们要找的是下标为k-1的数
return quickSearch(arr, 0, arr.length - 1, k - 1);
}
private int[] quickSearch(int[] nums, int lo, int hi, int k) {
// 每快排切分1次,找到排序后下标为j的元素,如果j恰好等于k就返回j以及j左边所有的数;
int j = partition(nums, lo, hi);
if (j == k) {
return Arrays.copyOf(nums, j + 1);
}
// 否则根据下标j与k的大小关系来决定继续切分左段还是右段。
return j > k? quickSearch(nums, lo, j - 1, k): quickSearch(nums, j + 1, hi, k);
}
// 快排切分,返回下标j,使得比nums[j]小的数都在j的左边,比nums[j]大的数都在j的右边。
private int partition(int[] nums, int lo, int hi) {
int v = nums[lo];
int i = lo, j = hi + 1;
while (true) {
while (++i <= hi && nums[i] < v);
while (--j >= lo && nums[j] > v);
if (i >= j) {
break;
}
int t = nums[j];
nums[j] = nums[i];
nums[i] = t;
}
nums[lo] = nums[j];
nums[j] = v;
return j;
}
}
快排切分时间复杂度分析: 因为我们是要找下标为k的元素,第一次切分的时候需要遍历整个数组 (0 ~ n)
找到了下标是 j
的元素,假如 k
比 j
小的话,那么我们下次切分只要遍历数组 (0~k-1)
的元素就行啦,反之如果 k
比 j
大的话,那下次切分只要遍历数组 (k+1~n)
的元素就行啦,总之可以看作每次调用 partition 遍历的元素数目都是上一次遍历的 1/2,因此时间复杂度是 N + N/2 + N/4 + ... + N/N = 2N
, 因此时间复杂度是 O(N)O(N)。
二、大根堆(前 K 小) / 小根堆(前 K 大),Java中有现成的 PriorityQueue,实现起来最简单:O(NlogK)
本题是求前 K
小,因此用一个容量为 K
的大根堆,每次 poll 出最大的数,那堆中保留的就是前 K
小啦(注意不是小根堆!小根堆的话需要把全部的元素都入堆,那是 O(NlogN),就不是 O(NlogK)啦~~)
这个方法比快排慢,但是因为 Java 中提供了现成的 PriorityQueue(默认小根堆),所以实现起来最简单,没几行代码~
// 保持堆的大小为K,然后遍历数组中的数字,遍历的时候做如下判断:
// 1. 若目前堆的大小小于K,将当前数字放入堆中。
// 2. 否则判断当前数字与大根堆堆顶元素的大小关系,如果当前数字比大根堆堆顶还大,这个数就直接跳过;
// 反之如果当前数字比大根堆堆顶小,先poll掉堆顶,再将该数字放入堆中。
class Solution {
public int[] getLeastNumbers(int[] arr, int k) {
if (k == 0 || arr.length == 0) {
return new int[0];
}
// 默认是小根堆,实现大根堆需要重写一下比较器。
Queue<Integer> pq = new PriorityQueue<>((v1, v2) -> v2 - v1);
for (int num: arr) {
if (pq.size() < k) {
pq.offer(num);
} else if (num < pq.peek()) {
pq.poll();
pq.offer(num);
}
}
// 返回堆中的元素
int[] res = new int[pq.size()];
int idx = 0;
for(int num: pq) {
res[idx++] = num;
}
return res;
}
}
三、二叉搜索树也可以 O(NlogK)解决 TopK 问题哦
BST 相对于前两种方法没那么常见,但是也很简单,和大根堆的思路差不多~
要提的是,与前两种方法相比,BST 有一个好处是求得的前K大的数字是有序的。
因为有重复的数字,所以用的是 TreeMap 而不是 TreeSet(有的语言的标准库自带 TreeMultiset,也是可以的)。
TreeMap的key 是数字,value 是该数字的个数。
我们遍历数组中的数字,维护一个数字总个数为 K 的 TreeMap:
1.若目前 map 中数字个数小于 K,则将 map 中当前数字对应的个数 +1;
2.否则,判断当前数字与 map 中最大的数字的大小关系:若当前数字大于等于 map 中的最大数字,就直接跳过该数字;若当前数字小于 map 中的最大数字,则将 map 中当前数字对应的个数 +1,并将 map 中最大数字对应的个数减 1。
class Solution {
public int[] getLeastNumbers(int[] arr, int k) {
if (k == 0 || arr.length == 0) {
return new int[0];
}
// TreeMap的key是数字, value是该数字的个数。
// cnt表示当前map总共存了多少个数字。
TreeMap<Integer, Integer> map = new TreeMap<>();
int cnt = 0;
for (int num: arr) {
// 1. 遍历数组,若当前map中的数字个数小于k,则map中当前数字对应个数+1
if (cnt < k) {
map.put(num, map.getOrDefault(num, 0) + 1);
cnt++;
continue;
}
// 2. 否则,取出map中最大的Key(即最大的数字), 判断当前数字与map中最大数字的大小关系:
// 若当前数字比map中最大的数字还大,就直接忽略;
// 若当前数字比map中最大的数字小,则将当前数字加入map中,并将map中的最大数字的个数-1。
Map.Entry<Integer, Integer> entry = map.lastEntry();
if (entry.getKey() > num) {
map.put(num, map.getOrDefault(num, 0) + 1);
if (entry.getValue() == 1) {
map.pollLastEntry();
} else {
map.put(entry.getKey(), entry.getValue() - 1);
}
}
}
// 最后返回map中的元素
int[] res = new int[k];
int idx = 0;
for (Map.Entry<Integer, Integer> entry: map.entrySet()) {
int freq = entry.getValue();
while (freq-- > 0) {
res[idx++] = entry.getKey();
}
}
return res;
}
}
四、数据范围有限时直接计数排序就行了:O(N)
class Solution {
public int[] getLeastNumbers(int[] arr, int k) {
if (k == 0 || arr.length == 0) {
return new int[0];
}
// 统计每个数字出现的次数
int[] counter = new int[10001];
for (int num: arr) {
counter[num]++;
}
// 根据counter数组从头找出k个数作为返回结果
int[] res = new int[k];
int idx = 0;
for (int num = 0; num < counter.length; num++) {
while (counter[num]-- > 0 && idx < k) {
res[idx++] = num;
}
if (idx == k) {
break;
}
}
return res;
}
}
如果面试时遇到的面试题哟多种解法,并且每种解法都各有优缺点,那么我们要向面试官问清楚题目的要求,输入的特点,从而选择最合适的解法。