零输入响应,零状态响应和完全响应

动态电路分析

实际上就是有电容和电感的电路。由于他们能贮存能量,并独立作为电压源和电流源,从以下三种情况分析(均为一阶电路)

零输入响应

无信号作用,由初始时刻的储能所产生的响应。即没有独立电源接入,而由电容或电感充当电源。通常为电容或电感达到稳态后断开独立电源与支路的连接。俗称放电
以下给出电容电压状态随时间的推导(RC电路)
在这里插入图片描述
为方便表示,将P(x)=RC称为时间常数τ,单位为s。由单位换算可知其为时间常数。规定Uc在四倍τ时间处达到0。
电感电流状态随时间的推导(RL电路)同理
在这里插入图片描述
此处,将L/R称为时间常数τ,单位为s。仍取四倍τ时间为0
于是有以下结论
在这里插入图片描述

零状态响应

初始时刻无储能,由初始时刻施加于网络的输入信号所产生的响应。即电容或电感所储能为0,光靠外接独立电源作用。俗称充电。
零状态响应的完全解由齐次解加上特解组成,而齐次解就是上方的零输入状态的公式
给出以下推导
在这里插入图片描述

完全响应

完全响应类似上述两种情况的综合。动态原件初值不为0,且存在独立电源激励。
完全响应与零状态相似。但完全响应不是从储能为0的状态开始,因此初始状态不同。给出以下推导

在这里插入图片描述
可见公式需要初始值稳态值时间常数三个要素,称为三要素公式。用此公式求解称为三要素法。 电容的初始值和稳态值是电压,电感则是电流
完全响应的完全解能看成两部分,一部分是齐次解,称为暂态响应;另一部分是特解,稳定存在的响应分量,称为稳态响应
或者说,完全响应是零输入响应和零状态响应的叠加

解题

RL电路
  1. 将电感看作导线,求初始电流
  2. 求时间常数L/R,R为从电感看进去的等效电阻
  3. 代公式求电感电流
  4. 根据公式求电感两端电压
  5. 分析其他支路电流电压
    在这里插入图片描述
RC电路
  1. 将电容看作断路,求短路电压
  2. 求时间常数RC,R为从电容看进去的等效电阻
  3. 代公式求电容电压
  4. 根据公式求电容电流
  5. 分析其他支路电流电压
    在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值