多元函数中的偏导数全导数以及隐函数

偏导数全导数

偏导数

由于是二元函数,有两个因变量。偏导数表示分别对某一个导数求导,如偏x导数、偏y导数。

高阶偏导数

对偏导数继续求导。以二元函数的二阶偏导数为例,偏x导数有两个偏导数、偏y导数有两个偏导数。
在这里插入图片描述
定理:如果二元函数的两个二阶混合偏导数连续,那么他们两个相等。

全微分

与一元函数类似,由于有两个变量,x或y的增量称为偏增量,单单对x或y的微分称为偏微分
若x,y同时增加,称为全增量
全微分定义见下图
在这里插入图片描述

定理
  1. 如果函数在该点可微分,那么其在该点的偏导数一定存在,且全微分中A、B分别等于偏x导数、偏y导数(叠加定理)
    (全微分存在,函数可微分,偏导数一定存在;偏导数存在,全微分不一定存在)
    在这里插入图片描述
  2. 如果函数在该点偏导数连续,那么函数在该点可微分

多元复合函数求导

一元函数与多元函数复合

先对多元函数微分,再把每个函数看成一元函数进行求导
在这里插入图片描述

多元函数与多元函数复合

如果对x求导,就先对所有函数微分,再把每个函数对x微分,最后相加。对y同理。
在这里插入图片描述

其他情形

当多元函数与一元或者多元函数复合时,可能所导变量在某个函数中不存在
在这里插入图片描述
不管那种情况,都有一下规律:
把最外层函数里的一个一个函数看过来,如果这个函数不存在所导变量,就不理他看下一个(微分后为0)。如果有,就先把最外层函数对其微分,如果里面这个函数是一元函数,就对变量求导;如果是多元,就对变量微分。

多元函数二阶求导

为方便起见,做出如下定义:有z=f(u,v)。f1’(u,v)=fu(u,v)——f对u求偏导;f2’=fv(u,v)——f对v求偏导;f12’’(u,v)=fuv(u,v)等等…
先求一阶偏导,再根据公式求二阶偏导数。需要注意的是此处求出来的是一阶偏导对变量的微分。由于一阶偏导内涵中间变量u、v,因此要再进行微分将一阶偏导对变量的微分变成二阶偏导。

隐函数求导

在这里插入图片描述

方程组

在这里插入图片描述
在求解的时候可以把行列式右边的常数和所求的变量前的系数代换,利用行列式法则求解。
以下给出例题
在这里插入图片描述

  • 46
    点赞
  • 129
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
1. 使用Python 绘制二元函数的图像: 首先需要安装matplotlib库,然后使用以下代码进行绘图: ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) # 定义二元函数 Z = X**2 + Y**2 # 绘制图像 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() ``` 2. 多元函数偏导数偏导数表示函数在某个变量上的变化率,而其他变量保持不变。对于多元函数,可以对每个变量分别偏导数。 例如,对于函数 $f(x,y)=x^2+y^2$,可以出它在 $x$ 和 $y$ 上的偏导数: $\frac{\partial f}{\partial x} = 2x$ $\frac{\partial f}{\partial y} = 2y$ 3. 多元函数的高阶偏导数: 高阶偏导数表示函数在某个变量上的变化率的变化率,可以通过对偏导数再次导得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以出它的二阶偏导数: $\frac{\partial^2 f}{\partial x^2} = 2$ $\frac{\partial^2 f}{\partial y^2} = 2$ $\frac{\partial^2 f}{\partial x\partial y} = 0$ 4. 多元函数微分: 微分表示函数在某个点上的变化量,可以通过对每个变量的偏导数和得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以出它在点 $(1,2)$ 处的微分: $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ $= 2x dx + 2y dy$ $= 2(1) dx + 2(2) dy$ $= 2dx + 4dy$ 5. 隐函数偏导数隐函数是一个多元函数,其一个变量可以表示为其他变量的函数,例如 $x^2+y^2=1$ 可以表示为 $y=\sqrt{1-x^2}$。 对于这样的隐函数,可以使用隐函数导法出它的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$ 其 $f(x,y)=x^2+y^2-1$,代入得: $\frac{\partial y}{\partial x} = -\frac{2x}{2y} = -\frac{x}{y}$ 6. 隐函数组的偏导数: 类似地,对于多个隐函数组成的隐函数组,可以使用偏导数的链式法则出它们的偏导数。 例如,对于隐函数组 $\begin{cases}f(x,y,z) = x^2+y^2+z^2-1=0 \\ g(x,y,z) = x+y+z-2=0\end{cases}$,可以出它们在点 $(1,1,0)$ 处的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = -\frac{2x}{2y} = -\frac{x}{y}$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial y}} = -\frac{2z}{2y} = -\frac{z}{y}$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial x}} = -\frac{2z}{2x} = -\frac{z}{x}$ $\frac{\partial y}{\partial x} = -\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial x}} = -1$ 7. 方向导数与梯度: 方向导数表示函数在某个方向上的变化率,可以通过对梯度向量与该方向向量进行点积得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处沿着向量 $(1,1)$ 的方向导数为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $D_{\vec{v}}f = \nabla f \cdot \vec{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 6$ 梯度表示函数在某个点上的最大变化率,可以通过对每个变量的偏导数构成的向量得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处的梯度为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ 8. 多元函数的极值: 极值表示函数在某个点上取得最大或最小值,可以通过偏导数为0的方程组来得到。 例如,对于函数 $f(x,y)=x^2+y^2+2x+4y+1$,可以出它的偏导数: $\frac{\partial f}{\partial x} = 2x+2$ $\frac{\partial f}{\partial y} = 2y+4$ 令偏导数为0,得到临界点 $(x,y)=(-1,-2)$。 然后可以通过解二阶偏导数的行列式来确定这个点的极值类型: $D = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x\partial y} \\ \frac{\partial^2 f}{\partial y\partial x} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$ 因为 $D>0$ 且 $\frac{\partial^2 f}{\partial x^2}>0$,所以这个点是函数的最小值点。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值