yolov7-环境搭建-跑通detect.py

文章详细介绍了如何使用conda创建虚拟环境yolov7,激活环境后下载对应版本的pytorch,并安装必要依赖。接着从GitHub下载yolov7源码,安装requirements文件中的库,下载权重参数,然后执行检测脚本来运行模型。最后提到了在PyCharm中配置虚拟环境并进行相同操作的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境搭建

首先在cmd或者anaconda promot中新建一个虚拟环境

conda create -n yolov7 python=3.9
  • 注意:新建环境一定要把vpn关掉

激活环境,进入yolov7环境下,下载pytorch,进入pytorch官网进行下载,注意,要下载的cudn版本要小于本机的cudn版本,nvidia-smi版本为12.1,nvcc -v版本为12.0,我们选择要下载的cudn版本为11.6,同时我们新建的环境是python3.9,python和pytorch版本也有对应,如下图,我怕,我们选择pytorch1.12

activate yolov7
#在cmd命令下
conda activate yolov7
#promot下

 安装完之后,我们可以在promot或者cmd进行验证

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值