月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。
注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有 3 种月饼,其库存量分别为 18、15、10 万吨,总售价分别为 75、72、45 亿元。如果市场的最大需求量只有 20 万吨,那么我们最大收益策略应该是卖出全部 15 万吨第 2 种月饼、以及 5 万吨第 3 种月饼,获得 72 + 45/2 = 94.5(亿元)。
输入格式:
每个输入包含一个测试用例。每个测试用例先给出一个不超过 1000 的正整数 N 表示月饼的种类数、以及不超过 500(以万吨为单位)的正整数 D 表示市场最大需求量。随后一行给出 N 个正数表示每种月饼的库存量(以万吨为单位);最后一行给出 N 个正数表示每种月饼的总售价(以亿元为单位)。数字间以空格分隔。
输出格式:
对每组测试用例,在一行中输出最大收益,以亿元为单位并精确到小数点后 2 位。
输入样例:
3 20
18 15 10
75 72 45
输出样例:
94.50
思路:二刷注意结构体里三个数据必须都是double类型
采用总是选择单价最高的月饼出售,可以获得最大利润。于是对每种月饼都根据其库存量和总售价来计算该种月饼的单价,之后将所有月饼按单价从高到低排。
主要处理:
(1)如果该月饼的库存量不足以填补所有需求量,则将该月饼全部卖出,此时需求量减少该种月饼的库存量大小,收益增加该种月饼的总售价大小。
(2)如果该种月饼的库存量足够供应需求量,则只提供需求量大小的月饼,此时收益增加当前需求量乘以该种月饼的单价,而需求量减为0。
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
struct mooncake
{
double store,price,unit;
};
bool cmp(mooncake a,mooncake b)
{
return a.unit > b.unit; //返回a.unit > b.unit的意思是让单价从大到小排序
}
int main()
{
int kind = 0;
int need = 0;
mooncake mc[1000];
cin >> kind >> need;
for(int i = 0; i < kind; i++) cin >> mc[i].store;
for(int i = 0; i < kind; i++) cin >> mc[i].price;
for(int i = 0; i < kind; i++) mc[i].unit = mc[i].price / mc[i].store;
sort(mc,mc+kind,cmp);
double result = 0.0;
for(int i = 0; i < kind; i++)
{
if(need <= mc[i].store)
{
result = result + need*mc[i].unit;
break;
}else{
result = result + mc[i].price;
}
need = need - mc[i].store;
}
cout << fixed << setprecision(2) << result <<endl;
return 0;
}
总结:这里贪心体现在总是选择单价最高的月饼出售,可以获得最大的利润。