数据分析学习笔记
文章平均质量分 90
吴千行
独学而无友孤陋寡闻
展开
-
SQL
1.数据库基本概念mysq和 redis区别2. 其他1.事务2. 使用存储过程3.使用游标4.使用触发器5.安全管理6. 数据库维护7.变量Hive4. MYSQL1.安装SQL1.语法规则1.编程规范2. 语言分类1. DML2. DDL3. DCL3.数据类型4. 运算1.运算符2. 函数5.[Date函数](%28https://blog.csdn.net/qq_38486203/article/details/80654040?ops_request_misc=%25257B%252522req.原创 2021-03-06 06:52:43 · 2157 阅读 · 1 评论 -
Python入门笔记
入门初级原创 2021-03-06 06:47:16 · 6515 阅读 · 0 评论 -
Excel 的进阶学习
文章目录Excel 的进阶学习1. 常用的 Excel 函数及用途1. 关联匹配类2. 清洗处理类3.逻辑运算类4.计算统计类5.时间序列类2.基础1.快捷键2.数据组错误信息基本认识计算操作符3.数据图展示3. 实战分析注意Excel 的进阶学习Excel 是我们工作中经常使用的一种工具,对于数据分析来说,这也是处理数据最基础的工具。 很多传统行业的数据分析师甚至只要掌握 Excel 和 SQL 即可。 对于初学者,有的时候并不需要急于苦学 R 语言等专业工具(当然会也是加分项),因为 Excel原创 2021-03-06 06:41:44 · 4630 阅读 · 0 评论 -
高阶用户运营体系搭建
这里写目录标题第1章 理解用户运营本质1. 什么是“用户运营”?2.一个“用户运营”重点关注什么?3.怎么做好用户运营?4.高阶用户运营体系搭建5.大规模用户运营体系的3大子系统6.用户留存的归因/活跃差模型7.用户运营基本功之用户召回法第2章 用户分层和精细化运营落地1.了解用户分层的本质2.四种常见的用户分层介绍3. 用户生命周期分层法4.RFM分层方法应用5.怎么使用AARRR模型对用户分层6.面对用户不同需求时在做用户分层案例:详解豆瓣是如何做用户分层的必修9:怎么用金字塔分层法做用户分层?第3原创 2021-01-16 11:54:34 · 3470 阅读 · 1 评论 -
数据分析思维扫盲
知识来源:接地气学堂1前言行文之初衷,建立知识树,因而不易速读,请君悉知。宜为工具书,按索引取之。独学而无友,必孤陋寡闻,请君赐教,不吝感激。循序图之,数据分析介绍前言一、基本认识1. 数据分析定义2. 需求层的工作概述3.数据层工作概述4.分析层工作概述5.输出层工作概述7.技术与能力其他概念数据赋能数据产品二.数据分析可以解决问题类型:1.“是多少”问题的解决思路2.“是什么”问题的解决方法3.“为什么”问题的解决方法4.“会怎样”问题的解决方法5.属于“怎么做”的方法总结三.数据分析思路如何原创 2021-01-14 09:26:44 · 10272 阅读 · 0 评论 -
数学基础扫盲
欧氏距离最常用的距离公式,也叫做欧几里得距离。在二维空间中,两点的欧式距离就是:同理,我们也可以求得两点在 n 维空间中的距离:曼哈顿距离在几何空间中用的比较多。以下图为例绿色的直线代表两点之间的欧式距离,而红色和黄色的线为两点的曼哈顿距离。所以曼哈顿距离等于两个点在坐标系上绝对轴距总和。用公式表示就是:闵可夫斯基距离不是一个距离,而是一组距离的定义。对于 n 维空间中的两个点 x(x1,x2,…,xn) 和 y(y1,y2,…,yn) , x 和 y 两点之间的闵可夫斯基..原创 2021-01-05 22:56:02 · 2597 阅读 · 2 评论 -
信息论笔记(需要编辑格式)
主要来源:吴军·信息论40讲信息论介绍世界上任何一个探索者都需要清楚三件事:我们现在的位置,我们的目标,以及通向目标的道路。哲学是一门生活的艺术,它帮助我们认清自己,它回答了第一个问题。至于每一个人的目标,我相信大家比我更清楚。而第三件事其实是方法论。一般没有科学基础的方法论常常难以持久。世界上的知识,可以分为道和术两个层面这门课讲的是道的层面的知识,它不会讲述任何具体的方法,比如信息的采集、处理或者传输的理论细节。这样,我们就能够把重点放在讲述用信息论指导做事的方法上,以便让我们能够在不断.原创 2021-01-02 00:27:06 · 9734 阅读 · 0 评论 -
数据挖掘(Data Mining)扫盲笔记
知识框架来源:人工智能之数据挖掘其他补充来源:概述数挖掘广义观点:一类深层次的数据分析方法目的自动抽取隐含的、以前未知的、具有潜在应用价值的模式或规则等有用知识方法:使用人工智能、机器学习、统计学和数据库等交叉学科领域方法对象:大规模、不完全、有噪声、模糊随机的数据集。核心过程:(1) 数据清理:消除噪声和删除不一致数据。(2) 数据集成:将多种数据源组合在数据仓库。(3) 数据选择:从数据库中提取与分析任务相关的数据。(4) 数据变换:通过汇总或聚集操作把数据.原创 2020-12-24 20:01:52 · 16225 阅读 · 1 评论