使用PEF相场的方法实现不规则形状燃面推移(观点)

不规则形状的定义

对于 n n n维几何图形,可以使用 n + 1 n+1 n+1维的某个函数的等值线定义。这里称为相场 φ \varphi φ

定义 φ \varphi φ取1的位置是固体装药, φ \varphi φ取-1的位置是气体。那么气-固边界自然而然地就定义好了(虽然没有解析表达式,但是边界是可以绘制出来的)

不规则形状燃面推移

根据相场 φ \varphi φ,提出两个变量:虚拟燃速 r r r和源项因子 i s S o l i d isSolid isSolid。它们的定义为
r = { 1 , 如果 φ > 0 1 + 5000 φ 2 , 其他情况 r=\left\{ \begin{array}{c} 1,\text{如果}\varphi >0\\ 1+5000\varphi ^2,\text{其他情况}\\ \end{array} \right. r={1,如果φ>01+5000φ2,其他情况 i s S o l i d = { 1 , 如果 φ > 0 0 , 其他情况 isSolid=\left\{ \begin{array}{c} 1,\text{如果}\varphi >0\\ 0,\text{其他情况}\\ \end{array} \right. isSolid={1,如果φ>00,其他情况
之所以虚拟燃速使用二次罚函数的形式,是为了使得在有限元框架下交界面更加光滑连续。
那么PEF求解的控制方程为
α r ∇ 2 W = ( r 2 ∇ W ⋅ ∇ W − 1 ) ⋅ i s S o l i d \alpha r\nabla ^2W=\left( r^2\nabla W\cdot \nabla W-1 \right) \cdot isSolid αr2W=(r2WW1)isSolid

一个实例

相场 φ \varphi φ如下
在这里插入图片描述
燃面推移结果 W W W场如下
在这里插入图片描述
有限元法燃面推移的收敛性和收敛速度(因为使用一阶单元)有明显提升,且气-固边界清晰光滑

进一步的性能还有待考察。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jedi-knight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值