不规则形状的定义
对于 n n n维几何图形,可以使用 n + 1 n+1 n+1维的某个函数的等值线定义。这里称为相场 φ \varphi φ。
定义 φ \varphi φ取1的位置是固体装药, φ \varphi φ取-1的位置是气体。那么气-固边界自然而然地就定义好了(虽然没有解析表达式,但是边界是可以绘制出来的)
不规则形状燃面推移
根据相场
φ
\varphi
φ,提出两个变量:虚拟燃速
r
r
r和源项因子
i
s
S
o
l
i
d
isSolid
isSolid。它们的定义为
r
=
{
1
,
如果
φ
>
0
1
+
5000
φ
2
,
其他情况
r=\left\{ \begin{array}{c} 1,\text{如果}\varphi >0\\ 1+5000\varphi ^2,\text{其他情况}\\ \end{array} \right.
r={1,如果φ>01+5000φ2,其他情况
i
s
S
o
l
i
d
=
{
1
,
如果
φ
>
0
0
,
其他情况
isSolid=\left\{ \begin{array}{c} 1,\text{如果}\varphi >0\\ 0,\text{其他情况}\\ \end{array} \right.
isSolid={1,如果φ>00,其他情况
之所以虚拟燃速使用二次罚函数的形式,是为了使得在有限元框架下交界面更加光滑连续。
那么PEF求解的控制方程为
α
r
∇
2
W
=
(
r
2
∇
W
⋅
∇
W
−
1
)
⋅
i
s
S
o
l
i
d
\alpha r\nabla ^2W=\left( r^2\nabla W\cdot \nabla W-1 \right) \cdot isSolid
αr∇2W=(r2∇W⋅∇W−1)⋅isSolid
一个实例
相场
φ
\varphi
φ如下
燃面推移结果
W
W
W场如下
有限元法燃面推移的收敛性和收敛速度(因为使用一阶单元)有明显提升,且气-固边界清晰光滑。
进一步的性能还有待考察。