谢苗诺夫着火理论
基本关系
考虑体积为
V
V
V的一团可燃混气
(1)化学反应单位时间的产生热量
q
˙
r
=
V
Q
ω
˙
=
V
Q
A
c
n
e
−
E
R
T
{\dot q_r} = VQ\dot \omega = VQA{c^n}{e^{ - {E \over {RT}}}}
q˙r=VQω˙=VQAcne−RTE式中
Q
Q
Q是1摩尔反应所放出的热量,
ω
˙
\dot \omega
ω˙是反应速率,遵循阿伦尼乌斯定律,与温度
T
T
T呈指数关系
(2)对流换热单位时间内放出热量
q
˙
l
=
h
S
(
T
−
T
0
)
{\dot q_l} = hS\left( {T - {T_0}} \right)
q˙l=hS(T−T0)式中
h
h
h是对流换热系数,
S
S
S是表面积,
T
0
T_0
T0是环境温度
当反应产热曲线与反应放热曲线相切,该温度即为自燃温度
自燃温度的计算
由
q
˙
r
=
q
˙
l
{\dot q_r} = {\dot q_l}
q˙r=q˙l可得
V
Q
A
c
n
e
−
E
R
T
=
h
S
(
T
−
T
0
)
VQA{c^n}{e^{ - {E \over {RT}}}} = hS\left( {T - {T_0}} \right)
VQAcne−RTE=hS(T−T0)
由
d
q
˙
r
d
T
=
d
q
˙
l
d
T
{{{\rm{d}}{{\dot q}_r}} \over {{\mathop{\rm d}\nolimits} T}} = {{{\rm{d}}{{\dot q}_l}} \over {{\mathop{\rm d}\nolimits} T}}
dTdq˙r=dTdq˙l可得
E
R
T
2
V
Q
A
c
n
e
−
E
R
T
=
h
S
{E \over {R{T^2}}}VQA{c^n}{e^{ - {E \over {RT}}}} = hS
RT2EVQAcne−RTE=hS
两方程做比值可得
R
T
2
E
=
T
−
T
0
{{R{T^2}} \over E} = T - {T_0}
ERT2=T−T0
解此二次方程可得着火温度