pandas缺失值相关处理

查找缺失值

df = pd.DataFrame({'a':[1, 2, 3],'b':[3, None, 4]})

# 缺失的行
df[pd.isna(df).T.any()]

# 缺失的列
df.T[pd.isna(df).any()]

# 完整的行
df[pd.notna(df).T.all()]

# 完整的列
df.T[pd.notna(df).all()]

删除缺失值

# 删除全部为NaN的行
df.dropna(axis=0, how='all')
df.dropna(axis=0, how='all', inplace=True)  # inplace 是否更新df,默认False 

# 删除含有NaN的行
df.dropna(axis=0, how='any')

# 删除全部为NaN的列
df.dropna(axis=1, how='all') 

# 删除含有NaN的列
df.dropna(axis=1, how='any')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值