机器学习---常见的距离公式(欧氏距离、曼哈顿距离、标准化欧式距离、余弦距离、杰卡德距离、马氏距离、切比雪夫距离、闵可夫斯基距离、K-L散度)

本文详细讲解了多种常见的IT技术中的距离度量方法,如欧氏、曼哈顿、余弦等,并探讨了它们在实际问题中的应用和特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 欧氏距离

       欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空

间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中

的欧氏距离就是两点之间的实际距离。

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)

print(distance.euclidean(a, b))

2. 曼哈顿距离 

        图中红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的

曼哈顿距离。曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即d(i,j)=|xi-

xj|+|yi-yj|。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离

正是在南北方向上旅行的距离加上在东西方向上旅行的距离,因此,曼哈顿距离又称为出租车距

离。曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。曼哈顿距示意图在早期

的计算机图形学中,屏幕是由像素构成,是整数,点的坐标也一般是整数,原因是浮点运算很昂

贵,很慢而且有误差,如果直接使用AB的欧氏距离(欧几里德距离:在二维和三维空间中的欧氏

距离的就是两点之间的距离),则必须要进行浮点运算,如果使用AC和CB,则只要计算加减法即

可,这就大大提高了运算速度,而且不管累计运算多少次,都不会有误差。

import numpy as np
from scipy.spatial import distance

A = np.array([7,8,9])
B = np.array([4,5,6])

# 方式一:直接构造公式计算
dist1 = np.sum(np.abs(A-B))

# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=1)  #ord为范数类型,取值1(一范数),2(二范数),np.inf(无穷范数)࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值