python中log_Tylor公式(e^x_sinx_Gini)_Gamma

1、log函数的简单绘制

1、介绍
  使用python语法做出log函数的图像进行显示,代码如下:

# @Time : 2020/12/4 16:16
# @Description : 对于指数函数log的测试
import math
import matplotlib.pyplot as plt

if __name__ == "__main__":
    # x坐标范围为[1,299]/100
    x = [float(i) / 100.0 for i in range(1, 300)]
    y = [math.log(i) for i in x]
    plt.plot(x, y, 'r-', linewidth=3, label='log Curve')
    # 在图形上标记一条线和两个点
    a = [x[20], x[175]]
    b = [y[20], y[175]]
    plt.plot(a, b, 'g-', linewidth=2)
    plt.plot(a, b, 'b*', markersize=15, alpha=0.75)
    plt.legend(loc='upper left')
    plt.grid(True)
    plt.xlabel('x')
    plt.ylabel('log(x)')
    plt.show()

2、结果展示

2、log函数上升速度比较

1、代码

import math
import matplotlib.pyplot as plt
import numpy as np

if __name__ == "__main__":
    x = np.arange(0.05, 3, 0.05)
    y1 = [math.log(a, 1.5) for a in x]
    plt.plot(x, y1, linewidth=2, color="#007500", label='log1.5(x)')
    plt.plot([1, 1], [y1[0], y1[-1]], 'r--', linewidth=2)
    y2 = [math.log(a, 2) for a in x]
    plt.plot(x, y2, linewidth=2, color="#9F35FF", label='log2(x)')
    y3 = [math.log(a, 3) for a in x]
    plt.plot(x, y3, linewidth=2, color="#F75000", label='log3(x)')
    plt.legend(loc='lower right')
    plt.grid(True)
    plt.show()

2、结果展示

3、Tylor公式计算e^x

1、介绍
  下面时初等函数值在原点展开后的计算公式:


  在实际中,往往需要做一些变换,可以将其分为整数部分(ln2的倍数)和小数部分,下面是e^x的计算过程:

2、代码

# @Time : 2020/12/4 21:22
# @Description :泰勒公式展开,计算e^x
import numpy as np
import math
import matplotlib as mpl
import matplotlib.pyplot as plt


def calc_e_small(x):
    n = 10
    b = np.array([x] * n).cumprod()
    f = np.arange(1, n + 1).cumprod()
    return np.sum(b / f) + 1


def calc_e(x):
    reverse = False
    if x < 0:  # 处理负数
        x = -x
        reverse = True
    #     np.log(2)
    # ln2 = 0.69314718055994530941723212145818
    c = x / np.log(2)
    a = int(c + 0.5)
    b = x - a * np.log(2)
    y = (2 ** a) * calc_e_small(b)
    if reverse:
        return 1 / y
    return y


if __name__ == "__main__":
    t1 = np.linspace(-2, 0, 10, endpoint=False)
    t2 = np.linspace(0, 3, 20)
    t = np.concatenate((t1, t2))
    # 横轴数据
    print(t)
    y = np.empty_like(t)
    # i= index;x= value
    for i, x in enumerate(t):
        y[i] = calc_e(x)
        print('e^', x, ' = ', y[i], '(近似值)\t', math.exp(x), '(真实值)')
        # print('误差:', y[i] - math.exp(x))
    plt.figure(facecolor='w')
    mpl.rcParams['font.sans-serif'] = [u'SimHei']
    mpl.rcParams['axes.unicode_minus'] = False
    plt.plot(t, y, 'r-', t, y, 'go', linewidth=2)
    plt.title(u'Taylor展式的应用 - 指数函数', fontsize=18)
    plt.xlabel('X', fontsize=15)
    plt.ylabel('exp(X)', fontsize=15)
    plt.grid(True, ls=':')
    plt.show()

3、结果展示

4、Tylor公式计算sinx

  整数部分为pi的倍数。
1、代码

# @Time : 2020/12/6 10:54
# @Description : 泰勒公式展开-sin函数
import numpy as np
import math
import matplotlib as mpl
import matplotlib.pyplot as plt


def calc_sin_small(x):
    x2 = -x ** 2
    t = x
    f = 1
    sum = 0
    # 在这里完成了小数部分的转化
    # 对应公式:sinx=x-x^3/(3!)+x^5/(5!)
    for i in range(10):
        sum += t / f
        t *= x2
        f *= ((2 * i + 2) * (2 * i + 3))
    return sum


def calc_sin(x):
    a = x / (2 * np.pi)
    #
    k = np.floor(a)
    a = x - k * 2 * np.pi
    # 对于sin(k*pi)为0,此时只剩下小数部分
    return calc_sin_small(a)


if __name__ == "__main__":
    t = np.linspace(-2 * np.pi, 2 * np.pi, 100, endpoint=False)
    print
    t  # 横轴数据
    y = np.empty_like(t)
    for i, x in enumerate(t):
        y[i] = calc_sin(x)
        print
        'sin(', x, ') = ', y[i], '(近似值)\t', math.sin(x), '(真实值)'
        # print '误差:', y[i] - math.exp(x)
    mpl.rcParams['font.sans-serif'] = [u'SimHei']
    mpl.rcParams['axes.unicode_minus'] = False
    plt.figure(facecolor='w')
    plt.plot(t, y, 'r-', t, y, 'go', linewidth=2)
    plt.title(u'Taylor展式的应用 - 正弦函数', fontsize=18)
    plt.xlabel('X', fontsize=15)
    plt.ylabel('sin(X)', fontsize=15)
    plt.xlim((-7, 7))
    plt.ylim((-1.1, 1.1))
    plt.grid(True)
    plt.show()

2、结果展示

5、Tylor公式计算Gini系数

1、描述


2、代码

# @Time : 2020/12/6 11:14
# @Description : 二类分类问题基尼(Gini)指数,熵之半和分类误差率的关系
import numpy as np
import matplotlib.pyplot as plt

if __name__ == "__main__":
    p = np.arange(0.001, 1, 0.001, dtype=np.float)
    gini = 2 * p * (1 - p)
    h = -(p * np.log2(p) + (1 - p) * np.log2(1 - p)) / 2
    # vstack上下合并
    # 假设二分类问题中有2种类{A, B}, 共0个样本,A有3个,B有7个,
    # 那么该节点的预测值为class = B; err_rate = 3 / 10 = 0.3
    err = 1 - np.max(np.vstack((p, 1 - p)), axis=0)
    plt.plot(p, h, 'b-', linewidth=2, label='Entropy')
    plt.plot(p, gini, 'r-', linewidth=2, label='Gini')
    plt.plot(p, err, 'g--', linewidth=2, label='Error')
    plt.grid(True)
    plt.legend(loc='upper left')
    plt.show()

3、结果显示

6、阶乘和Gamma函数

1、描述


2、代码

# @Time : 2020/12/6 14:44
# @Description : 阶乘和gamma函数
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy.special import gamma
from scipy.special import factorial

mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

if __name__ == "__main__":
    N = 5
    x = np.linspace(0, N, 50)
    # y = x!
    y = gamma(x + 1)
    plt.figure(facecolor='w')
    plt.plot(x, y, 'r-', lw=2)
    z = np.arange(0, N + 1)
    f = factorial(z, exact=True)  # 阶乘
    #[  1   1   2   6  24 120]
    print(f)
    plt.plot(z, f, 'go', markersize=8)
    plt.grid(True)
    plt.xlim(-0.1, N + 0.1)
    plt.ylim(0.5, np.max(y) * 1.05)
    plt.xlabel(u'x', fontsize=15)
    plt.ylabel(u'Gamma(x)-阶乘', fontsize=15)
    plt.title(u'阶乘和Gamma函数', fontsize=16)
    plt.show()

3、结果展示

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值