负数的Gamma函数

本文深入探讨了伽玛函数Γ(n),它在数学中扮演着重要角色,特别是在实数和复数域的定义。伽玛函数与阶乘密切相关,且在大数时可用Stirling's公式进行近似。对于正实数,当n接近0时,伽玛函数趋向无穷大。此外,还介绍了伽玛函数在负整数和非整数值上的行为,包括其奇异性和递推关系。伽玛函数的导数和Euler's常数γ也有详细阐述。
摘要由CSDN通过智能技术生成

如果 n n n 是正整数,
Γ ( n ) = ( n − 1 ) ! (1) \Gamma(n) = (n-1)! \tag 1 Γ(n)=(n1)!(1)
除了负整数和 0 之外,伽玛函数对所有的复数有定义。
当 n 很大时, 伽玛函数可以用 Stirling’s 公式近似 (https://mathworld.wolfram.com/StirlingsApproximation.html)
Γ ( n + 1 ) = 2 π n ( n e ) n (2) \Gamma(n+1) = \sqrt {2\pi n}\left({n\over e}\right)^n \tag 2 Γ(n+1)=2πn (en)n(2)
对于正实数,当伽玛函数的自变量接近于 0, 伽玛函数会变得很大直至无限大。
Γ ( n ) = lim ⁡ r → ∞ r ! r n n ( n + 1 ) ⋯ ( n + r ) (3) \Gamma(n)=\lim_{r\to \infty} {r!r^n\over n(n+1)\cdots (n+r)} \tag 3 Γ(n)=rlimn(n+1)(n+r)r!rn(3)
如果 n = 0 , Γ ( n ) = r ! / 0 n=0, \Gamma(n)={r!/0} n=0,Γ(n)=r!/0.
伽玛函数定义
Γ ( n ) = ∫ 0 ∞ t n − 1 e − t d t , n > 0 (4) \Gamma(n)=\int_0^\infty t^{n-1}e^{-t}dt,\quad n>0 \tag 4 Γ(n)=0tn1etdt,n>0(4)
Γ ( n + 1 ) = n Γ ( n ) \Gamma(n+1)=n\Gamma(n) Γ(n+1)=nΓ(n)
n < 0 n<0 n<0,
Γ ( n ) = Γ ( n + 1 ) / n , n < 0 (5) \Gamma(n)=\Gamma(n+1)/n, \quad n<0 \tag 5 Γ(n)=Γ(n+1)/n,n<0(5)
Γ ( − 0.5 ) = Γ ( 0.5 ) / ( − 0.5 ) = − 2 π Γ ( − 1.5 ) = Γ ( − 0.5 ) / ( − 1.5 ) = 4 3 π \Gamma(-0.5)=\Gamma(0.5)/(-0.5)=-2\sqrt \pi \\ \Gamma(-1.5)=\Gamma(-0.5)/(-1.5)={4\over 3}\sqrt \pi Γ(0.5)=Γ(0.5)/(0.5)=2π Γ(1.5)=Γ(0.5)/(1.5)=34π

Γ ( 1 ) = 0 ! = 1 Γ ( 0 ) = ( − 1 ) ! = ∞ Γ ( − 1 ) = ( − 2 ) ! = ∞ \Gamma(1)=0!=1\\ \Gamma(0)=(-1)!=\infty\\ \Gamma(-1)=(-2)!=\infty Γ(1)=0!=1Γ(0)=(1)!=Γ(1)=(2)!=
在 Ref 2 中定义
Γ ( s ) ( − r ) = N − lim ⁡ ϵ → 0 ∫ ϵ ∞ t − r − 1 l n s t e − t d t , r , s = 0 , 1 , 2 , ⋯ (6) \Gamma^{(s)}(-r)=N-\lim_{\epsilon \to 0}\int_{\epsilon}^\infty t^{-r-1}ln^ste^{-t}dt, \quad r,s=0,1,2,\cdots \tag 6 Γ(s)(r)=Nϵ0limϵtr1lnstetdt,r,s=0,1,2,(6)
(where N is the neutrix)
根据定义(6)
Γ ( s ) ( 0 ) = Γ ( s + 1 ) ( 1 ) s + 1 , s = 0 , 1 , 2 , ⋯ \Gamma^{(s)}(0)={\Gamma^{(s+1)}(1)\over s+1}, \quad s=0,1,2,\cdots Γ(s)(0)=s+1Γ(s+1)(1),s=0,1,2,
特别地
Γ ( 0 ) = Γ ′ ( 1 ) = − γ \Gamma(0)=\Gamma'(1)=-\gamma Γ(0)=Γ(1)=γ
这里 γ \gamma γ 表示 Euler’s constant
γ = lim ⁡ n → ∞ ∑ k = 1 n ( 1 k − ln ⁡ n ) \gamma=\lim_{n\to\infty}\sum_{k=1}^n\left(\frac{1}{k}-\ln n\right) γ=nlimk=1n(k1lnn)
对于 r = 1 , 2 , ⋯ r=1,2,\cdots r=1,2,,有
Γ ( − r ) = ( − 1 ) r r r ! − 1 r Γ ( − r + 1 ) , r = 1 , 2 , ⋯ \Gamma(-r)={(-1)^r\over rr!}-{1\over r}\Gamma(-r+1), \quad r=1,2,\cdots Γ(r)=rr!(1)rr1Γ(r+1),r=1,2,
在 Proof 中,有一项 ϵ − r e − ϵ r {\epsilon^{-r}e^{-\epsilon}\over r} rϵreϵ 极限值,通过对 e − ϵ r ϵ − r {e^{-\epsilon}\over r \epsilon^{-r}} rϵreϵ 分子分母对 ϵ \epsilon ϵ 的 r 次求导得到 ( − 1 ) r r r ! {(-1)^r\over rr!} rr!(1)r.

Ref:

  1. Gamma Function for Different Negative Numbers and Its Applications
  2. Some Results on the Gamma Function for Negative Integers
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值