2018第九届蓝桥杯C/C++ B国赛 —— 第六题:矩阵求和

矩阵求和

经过重重笔试面试的考验,小明成功进入 Macrohard 公司工作。
今天小明的任务是填满这么一张表:
表有 n 行 n 列,行和列的编号都从1算起。
其中第 i 行第 j 个元素的值是 gcd(i, j)的平方,
gcd 表示最大公约数,以下是这个表的前四行的前四列:
1 1 1 1
1 4 1 4
1 1 9 1
1 4 1 16

小明突然冒出一个奇怪的想法,他想知道这张表中所有元素的和。
由于表过于庞大,他希望借助计算机的力量。

「输入格式」
一行一个正整数 n 意义见题。

「输出格式」
一行一个数,表示所有元素的和。由于答案比较大,请输出模 (10^9 + 7)(即:十亿零七) 后的结果。

「样例输入」
4

「样例输出」
48

「数据范围」
对于 30% 的数据,n <= 1000
存在 10% 的数据,n = 10^5
对于 60% 的数据,n <= 10^6
对于 100% 的数据,n <= 10^7

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms

代码

暴力解法
#include <iostream>
#include <cmath>
using namespace std;
int gcd(int i,int j)
{
    if (j==0) return i;
    return gcd(j,i%j);
}
int main()
{
    int n;
    cin>>n;
    int sum=0;
    for (int l = 1; l <= n; ++l)
        sum+=pow(l,2);
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j < i; ++j)
            sum+=2*pow(gcd(i,j),2);
    cout<<sum<<endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大风车滴呀滴溜溜地转

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值