机器学习
文章平均质量分 90
桂花味的六神
six god
展开
-
详解归一化、标准化、正则化以及batch normalization
一文详解归一化、标准化、正则化以及batch normalization原创 2024-07-01 14:20:03 · 2135 阅读 · 0 评论 -
线性代数中的矩阵类型
本文介绍了线性代数中几种重要的矩阵类型,包括正交矩阵、对角矩阵、奇异矩阵、非奇异矩阵、正定矩阵、半正定矩阵和负定矩阵。这些矩阵类型在矩阵分解、矩阵乘法、特征值分解、优化、控制等领域中有广泛的应用。了解这些矩阵类型的原理和性质,可以帮助我们更好地理解线性代数的相关概念和方法。原创 2023-05-30 10:32:43 · 1892 阅读 · 0 评论 -
非奇异值分解及应用介绍
奇异值分解是一种常用的矩阵分解方法,可以用于数据降维、矩阵压缩、推荐系统等领域。奇异值分解的核心思想是将矩阵分解为三个矩阵的乘积,其中对角矩阵Σ描述了矩阵A的奇异值,而矩阵U和V描述了矩阵A的左奇异向量和右奇异向量。奇异值分解的实现方式包括基于迭代的方法和基于分解的方法,具体选择哪种方法取决于应用场景和计算需求。原创 2023-05-30 09:55:23 · 643 阅读 · 0 评论 -
贝叶斯算法
本篇博客介绍了贝叶斯分类的原理、应用场景以及代码实现。贝叶斯分类是一种基于条件概率的分类方法,可以用于文本分类、垃圾邮件过滤、情感分析等领域。在实现上,我们可以使用 scikit-learn 库中的朴素贝叶斯分类器来进行分类。原创 2023-05-30 10:13:26 · 407 阅读 · 0 评论