【LOJ 6485】LJJ 学二项式定理(单位根反演)(模板)

LJJ 学二项式定理

题目链接:LOJ 6485

题目大意

求一个式子:
∑ i = 0 n ( ( n i ) s i a i   m o d   4 ) \sum\limits_{i=0}^n(\binom{n}{i}s^ia_{i\bmod 4}) i=0n((in)siaimod4)
其中 n ≤ 1 0 18 n\leq 10^{18} n1018

思路

这道题可以算是单位根反演的模板题。

单位根反演

首先单位根反演是用来处理一下带有取模的式子的。
(就系数里面有取模可以用这个弄掉)

然后式子是 [ n ∣ a ] = 1 n ∑ k = 0 n − 1 ω n a k [n|a]=\dfrac{1}{n}\sum\limits_{k=0}^{n-1}\omega_n^{ak} [na]=n1k=0n1ωnak

然后给证明:
a ≠ 0 (   m o d     n ) a\neq 0(\bmod\ n) a=0(mod n)
那我们可以用等比数列求和:
1 n ω n a n − 1 ω n a − 1 \dfrac{1}{n}\dfrac{\omega_n^{an}-1}{\omega_n^a-1} n1ωna1ωnan1
然后 ω n a ≠ 1 , ω n a − 1 ≠ 0 \omega^a_n\neq 1,\omega_n^a-1\neq 0 ωna=1,ωna1=0 分母没问题,分子因为 ω n n = ω n 0 = 1 \omega_n^n=\omega_n^0=1 ωnn=ωn0=1 ω n a n = ( ω n n ) a = 1 , ω n a n − 1 = 0 \omega^{an}_n=(\omega_n^n)^a=1,\omega_n^{an}-1=0 ωnan=(ωnn)a=1,ωnan1=0

a = 0 (   m o d     n ) a=0(\bmod\ n) a=0(mod n)
那特殊处理(因为这个时候下面是 0 0 0
1 n ∑ k = 0 n − 1 ω n a k   m o d   n \dfrac{1}{n}\sum\limits_{k=0}^{n-1}\omega_n^{ak\bmod n} n1k=0n1ωnakmodn
1 n ∑ k = 0 n − 1 ω n 0 = 1 n n = 1 \dfrac{1}{n}\sum\limits_{k=0}^{n-1}\omega_n^{0}=\dfrac{1}{n}n=1 n1k=0n1ωn0=n1n=1

然后一个经典的式子:
[ a = b ( m o d n ) ] = [ a − b = 0 ( m o d n ) ] = [ n ∣ ( a − b ) ] [a=b\pmod n]=[a-b=0\pmod n]=[n|(a-b)] [a=b(modn)]=[ab=0(modn)]=[n(ab)]
= 1 n ∑ k = 0 n − 1 ω n ( a − b ) k = 1 n ∑ k = 0 n − 1 ω n a k ω n − b k =\dfrac{1}{n}\sum\limits_{k=0}^{n-1}\omega_n^{(a-b)k}=\dfrac{1}{n}\sum\limits_{k=0}^{n-1}\omega_n^{ak}\omega_n^{-bk} =n1k=0n1ωn(ab)k=n1k=0n1ωnakωnbk

这道题

∑ i = 0 n ( ( n i ) s i a i   m o d   4 ) \sum\limits_{i=0}^n(\binom{n}{i}s^ia_{i\bmod 4}) i=0n((in)siaimod4)
∑ i = 0 n ( ( n i ) s i ( ∑ j = 0 3 a j [ i   m o d   4 = j ] ) ) \sum\limits_{i=0}^n(\binom{n}{i}s^i(\sum\limits_{j=0}^3a_j[i\bmod 4=j])) i=0n((in)si(j=03aj[imod4=j]))
∑ i = 0 n ( ( n i ) s i ( ∑ j = 0 3 a j [ 4 ∣ i − j ] ) ) \sum\limits_{i=0}^n(\binom{n}{i}s^i(\sum\limits_{j=0}^3a_j[4|i-j])) i=0n((in)si(j=03aj[4ij]))
∑ i = 0 n ( ( n i ) s i ( ∑ j = 0 3 a j ( 1 4 ∑ k = 0 3 ω 4 i k ω 4 − j k ) ) ) \sum\limits_{i=0}^n(\binom{n}{i}s^i(\sum\limits_{j=0}^3a_j(\dfrac{1}{4}\sum\limits_{k=0}^{3}\omega_4^{ik}\omega_4^{-jk}))) i=0n((in)si(j=03aj(41k=03ω4ikω4jk)))
1 4 ∑ k = 0 3 ( ∑ j = 0 3 a j ω 4 − j k ) ( ∑ i = 0 n ( n i ) s i ω 4 i k ) \dfrac{1}{4}\sum\limits_{k=0}^{3}(\sum\limits_{j=0}^3a_j\omega_4^{-jk})(\sum\limits_{i=0}^n\binom{n}{i}s^i\omega_4^{ik}) 41k=03(j=03ajω4jk)(i=0n(in)siω4ik)

(二项式定理)
∑ i = 0 n ( n i ) s i ω 4 i k \sum\limits_{i=0}^n\binom{n}{i}s^i\omega_4^{ik} i=0n(in)siω4ik
∑ i = 0 n ( n i ) ( s ω 4 k ) i 1 n − i \sum\limits_{i=0}^n\binom{n}{i}(s\omega_4^{k})^i1^{n-i} i=0n(in)(sω4k)i1ni
( s ω 4 k + 1 ) n (s\omega_4^k+1)^n (sω4k+1)n

(带回原式)
1 4 ∑ k = 0 3 ( ∑ j = 0 3 a j ω 4 − j k ) ( s ω 4 k + 1 ) n \dfrac{1}{4}\sum\limits_{k=0}^{3}(\sum\limits_{j=0}^3a_j\omega_4^{-jk})(s\omega_4^k+1)^n 41k=03(j=03ajω4jk)(sω4k+1)n

然后 ω 4 1 = g ( m o d − 1 ) / 4 \omega_4^1=g^{(mod-1)/4} ω41=g(mod1)/4

代码

#include<cstdio>
#define ll long long
#define mo 998244353

using namespace std;

ll n, s, a[4], G = 3, Gv, v4, ans, w[4];

ll ksm(ll x, ll y) {ll re = 1; while (y) {if (y & 1) re = re * x % mo; x = x * x % mo; y >>= 1;} return re;}

int main() {
	int T; scanf("%d", &T); Gv = ksm(G, mo - 2); v4 = ksm(4, mo - 2);
	w[0] = 1; w[1] = ksm(G, (mo - 1) / 4); for (int i = 2; i < 4; i++) w[i] = w[i - 1] * w[1] % mo;
	while (T--) {
		scanf("%lld %lld", &n, &s); for (int i = 0; i < 4; i++) scanf("%lld", &a[i]);
		ans = 0;
		for (int k = 0; k <= 3; k++) {
			ll now = 0;
			for (int j = 0; j <= 3; j++)
				(now += a[j] * w[(4 - j) * k % 4] % mo) %= mo;
			(ans += now * ksm((s * w[k] % mo + 1) % mo, n) % mo) %= mo;
		}
		printf("%lld\n", ans * v4 % mo);
	}
	
	return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值