单位根反演&[loj6485]LJJ 学二项式定理

前言

之前写反演的博客对于单位根反演只提了FFT
这里补一下一个应用

单位根反演

f i = ∑ j = 0 n − 1 ω n i ∗ j g j ⇔ g i = ∑ j = 0 n − 1 ω n − i ∗ j n f j f_i=\sum_{j=0}^{n-1}\omega_n^{i*j}g_j\Leftrightarrow g_i=\sum_{j=0}^{n-1}\frac{\omega_n^{-i*j}}nf_j fi=j=0n1ωnijgjgi=j=0n1nωnijfj
这是FFT里的
证明很方便,见我的博客对于容斥原理&反演的思考和总结
事实上,我们思考上式的本质
我们发现就是
[ n ∣ x ] = 1 n ∑ i = 0 n − 1 ( ω n x ) i [n|x]=\frac1n\sum_{i=0}^{n-1}(\omega_n^x)^i [nx]=n1i=0n1(ωnx)i
FFT中的形式把 x x x取值 a − b a-b ab,又保证 ∣ a − b ∣ &lt; n |a-b|&lt;n ab<n那么 n ∣ x n|x nx只有在 a = b a=b a=b的时候满足,即 δ a , b \delta_{a,b} δa,b
所以根据这个我们可以得到更多的应用,常见形式如下
对一个多项式
f ( x ) = ∑ i = 0 n − 1 a i x i f(x)=\sum_{i=0}^{n-1}a_ix^i f(x)=i=0n1aixi
求所有次数为 k k k的倍数的系数之和
A n s = ∑ i = 0 n − 1 [ k ∣ i ] a i \begin{aligned} Ans&amp;=\sum_{i=0}^{n-1}[k|i]a_i\\ \end{aligned} Ans=i=0n1[ki]ai

题解

题目要求的是
[ ∑ i = 0 n ( ( n i ) ⋅ s i ⋅ a i   m o d   4 ) ] m o d &ThinSpace;&ThinSpace; 998244353 \left[\sum_{i=0}^n\left(\binom ni·s^i·a_{i\ mod\ 4}\right)\right]\mod998244353 [i=0n((in)siai mod 4)]mod998244353
我们对 i m o d &ThinSpace;&ThinSpace; 4 i\mod4 imod4的值进行分别讨论,我们现在要求的就是各组的系数和
我们现在要求
[ ∑ i = 0 n ( ( n i ) ⋅ s i [ 4 ∣ i ] ) ] m o d &ThinSpace;&ThinSpace; 998244353 \left[\sum_{i=0}^n\left(\binom ni·s^i[4|i]\right)\right]\mod998244353 [i=0n((in)si[4i])]mod998244353
∑ i = 0 n ( ( n i ) ⋅ s i [ 4 ∣ i ] ) = ∑ i = 0 n ( ( n i ) ⋅ s i 1 4 ∑ j = 0 4 − 1 ( ω 4 i ) j ) = 1 4 ∑ j = 0 3 ∑ i = 0 n ( ( n i ) ⋅ s i ( ω 4 j ) i ) = 1 4 ∑ j = 0 3 ( s ω 4 j + 1 ) n \begin{aligned} \sum_{i=0}^n\left(\binom ni·s^i[4|i]\right)&amp;=\sum_{i=0}^n\left(\binom ni·s^i\frac14\sum_{j=0}^{4-1}(\omega_4^i)^j\right)\\ &amp;=\frac14\sum_{j=0}^{3}\sum_{i=0}^n\left(\binom ni·s^i(\omega_4^j)^i\right)\\ &amp;=\frac14\sum_{j=0}^{3}\left(s\omega_4^j+1\right)^n\\ \end{aligned} i=0n((in)si[4i])=i=0n((in)si41j=041(ω4i)j)=41j=03i=0n((in)si(ω4j)i)=41j=03(sω4j+1)n
那么单个的系数就求得了,那么我们发现除了 [ 4 ∣ i ] [4|i] [4i]的情况,还有 [ 4 ∣ i − 1 ] [4|i-1] [4i1], [ 4 ∣ i − 2 ] [4|i-2] [4i2], [ 4 ∣ i − 3 ] [4|i-3] [4i3]的情况,那么相当于是我们将关于 x = ω 4 j x=\omega_4^j x=ω4j的函数的值分别乘以 x − 1 , x − 2 , x − 3 x^{-1},x^{-2},x^{-3} x1x2x3,然后(具体做法是,对于 x = ω 4 i x=\omega_4^i x=ω4i x − 1 = ω 4 − i x^{-1}=\omega_4^{-i} x1=ω4i),其它的一样做即可

代码

#include<bits/stdc++.h>
typedef long long ll;
#define rg register
template <typename T> inline void read(T&x){char cu=getchar();x=0;bool fla=0;while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}while(isdigit(cu))x=x*10+cu-'0',cu=getchar();if(fla)x=-x;}
template <typename T> inline void printe(const T x){if(x>=10)printe(x/10);putchar(x%10+'0');}
template <typename T> inline void print(const T x){if(x<0)putchar('-'),printe(-x);else printe(x);}
const ll mod=998244353;
ll T,n,s,a0,a1,a2,a3,w0,w1,w2,w3,inv;
inline ll pow(ll x,ll y)
{
	ll res=1;
	for(;y;y>>=1,x=x*x%mod)if(y&1)res=res*x%mod;
	return res;
}
int main()
{
	read(T);
	w0=1,w1=pow(3,(mod-1)/4),w2=w1*w1%mod,w3=w1*w2%mod;
	inv=pow(4,mod-2);
	while(T--)
	{
		read(n),read(s),read(a0),read(a1),read(a2),read(a3);
		const ll k0=pow(s*w0%mod+1,n),k1=pow(s*w1%mod+1,n),k2=pow(s*w2%mod+1,n),k3=pow(s*w3%mod+1,n);
		ll ans=0;
		ans=(ans+(k0*w0+k1*w0+k2*w0+k3*w0)%mod*a0)%mod;
		ans=(ans+(k0*w0+k1*w3+k2*w2+k3*w1)%mod*a1)%mod;
		ans=(ans+(k0*w0+k1*w2+k2*w0+k3*w2)%mod*a2)%mod;
		ans=(ans+(k0*w0+k1*w1+k2*w2+k3*w3)%mod*a3)%mod;
		print(ans*inv%mod),putchar('\n');
	}
	return 0;
}

总结

单位根反演需要推式子,但写起来比较清真

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值