GEE- 哨兵数据进行植被指数计算(MTCI)

文章介绍了如何利用GoogleEarthEngine(GEE)平台,基于哨兵卫星数据的特定波段(B6,B5,B4)计算多光谱植被指数MTCI。提供了两种不同的计算方法,一种通过expression直接计算并添加为新波段,另一种则直接获取MTCI值。这两种函数展示了在遥感图像处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GEE- 哨兵数据进行植被指数计算(MTCI)

  • MTCI计算:

公式
在这里插入图片描述
上面是哨兵数据的波段介绍,来源于哨兵数据及其波段介绍
因此,利用哨兵数据计算MTCI植被指数时,对应选择的是第6,5,4波段。

function s2_mtci_1(image) {
    var mtci = image.expression('(RE2 - RE1)/ (RE1 - Red)', {
    'RE2': image.select('B6'),
    'RE1': image.select('B5'),
     'Red': image.select('B4'),
    }).float();
    //注意下面的形式是将计算获得的MTCI植被指数作为哨兵数据的波段添加进去了
    return image.addBands(mtci.rename('S2_MTCI')); 
}
function s2_mtci_2(image) {
    var RE2 = image.select('B6');
    var RE1 = image.select('B5');
    var red = image.select('B4');
    var mtci = RE2.subtract(RE1).divide(RE1.subtract(red));
    //注意下面的形式是直接获取的mtci植被指数
    return mtci; 
}
### 使用 Google Earth Engine (GEE) 处理 MODIS 数据计算 NDVI 植被指数GEE 平台上,可以通过调用 MODIS 卫星数据集来计算归一化差异植被指数(NDVI)。NDVI 是一种常用的遥感指标,用于评估植被的覆盖率和健康状态。以下是具体实现方式以及示例代码。 #### 1. 加载 MODIS 数据 MODIS 提供多种产品,其中 `MOD13Q1` 和 `MYD13Q1` 常用于获取 NDVI 波段。这些产品的分辨率通常为 250 米,时间跨度可以达到多年的时间序列[^1]。 ```javascript // 定义研究区域 var roi = ee.Geometry.Rectangle([78, 18, 80, 20]); // 加载 MODIS NDVI 数据 var modisNdvi = ee.ImageCollection('MODIS/061/MOD13Q1') .filterDate('2001-01-01', '2024-01-01') // 时间范围筛选 .select('NDVI'); // 仅保留 NDVI 波段 ``` 上述代码加载了从 2001 年到 2024 年之间的 MODIS NDVI 数据,并选择了特定的研究区域。 --- #### 2. 归一化 NDVI 值 原始 NDVI 的取值范围通常是 [-1, 1],但在某些 MODIS 数据集中可能以缩放形式存储(例如乘以 10000),因此需要对其进行归一化处理[^2]。 ```javascript // 对 NDVI 进行归一化处理 var normalizedNdvi = modisNdvi.map(function(image){ return image.divide(10000).rename('NDVI_normalized'); }); ``` 此操作将 NDVI 值重新映射回标准范围 [0, 1] 或 [-1, 1]。 --- #### 3. 统计不同 NDVI 范围内的面积 为了统计不同时期的不同 NDVI 值对应的面积变化,可以定义阈值区间并对图像进行分类。 ```javascript // 定义 NDVI 阈值范围 function classifyNdvi(ndviImage) { var ndviClassified = ndviImage.expression( "(ndvi >= -1 && ndvi < 0) ? 1 : " + "(ndvi >= 0 && ndvi < 0.2) ? 2 : " + "(ndvi >= 0.2 && ndvi < 0.4) ? 3 : " + "(ndvi >= 0.4 && ndvi <= 1) ? 4 : 0", {ndvi: ndviImage.select('NDVI_normalized')} ).rename('NDVI_class'); return ndviImage.addBands(ndviClassified); } // 应用分类函数 var classifiedNdvi = normalizedNdvi.map(classifyNdvi); // 计算每类的像元数量及其对应面积 var areaPerClass = classifiedNdvi.first().reduceRegion({ reducer: ee.Reducer.frequencyHistogram(), geometry: roi, scale: 250, // MODIS 分辨率 maxPixels: 1e9 }); print("NDVI 类别分布:", areaPerClass.get('NDVI_class')); ``` 这段代码实现了对 NDVI 图像的分类,并进一步统计了每一类别所占的像素数及实际地理面积。 --- #### 4. 可视化 NDVI 结果 最后一步是对结果进行可视化展示,以便更直观地观察 NDVI 的时空变化趋势。 ```javascript // 添加图层至地图 Map.centerObject(roi, 8); // 设置显示中心 Map.addLayer(normalizedNdvi.mean(), {min: 0, max: 1, palette: ['white', 'green']}, 'Mean NDVI'); ``` 通过设置颜色渐变表 (`palette`) 来区分不同的 NDVI 数值范围。 --- ### 总结 以上展示了如何在 GEE 中加载 MODIS 数据、归一化 NDVI 值、按阈值划分类别并统计面积,最终完成长时间序列的 NDVI 动态监测。这种方法广泛应用于生态学、农业科学等领域,帮助研究人员了解植被动态变化规律。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值