GEE 数据处理——Sentinel-1(哨兵1号)正确的数据预处理(去噪、滤波、辐射归一化)

本文介绍了如何在GEE(谷歌地球引擎)中处理哨兵1号SAR数据,包括去除GRD产品的边界噪声,应用斑点滤波和进行辐射地形归一化,以生成分析就绪数据。文章涵盖了哨兵1号数据的特点、预处理流程,以及预处理方法的详细解释,提供了代码示例和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

哨兵-1 号卫星提供时间密度高、空间分辨率高的合成孔径雷达(SAR)图像。哨兵-1 号的开放数据政策和全球覆盖范围使其成为基于合成孔径雷达的广泛应用的宝贵数据源。在这方面,谷歌地球引擎是进行大面积分析的关键平台,采集后几天内就可获得预处理的哨兵-1 反向散射图像。为了保留信息内容和用户自由度,一些预处理步骤(如斑点过滤)没有应用于摄入的圣天诺-1 图像,因为它们可能因应用而异。在本技术说明中,我们提出了一个在谷歌地球引擎中准备哨兵-1 SAR 后向散射分析-就绪数据的框架,该框架结合了现有的和新的谷歌地球引擎实现,用于额外的边界噪声校正、斑点过滤和辐射地形归一化。建议的框架可用于生成适合各种陆地和内陆水域应用的哨兵 1 号分析就绪数据。分析就绪数据准备框架是在谷歌地球引擎 JavaScript 和 Python 应用程序接口中实现的。

数据处理过程

GEE 中的哨兵-1 图像集包括哨兵-1 地面范围探测(GRD)场景,使用哨兵-1 工具箱进行处理,生成校准、正射校正产品。该集合包括在上升和下降轨道上获取的所有哨兵 1-A 和 1-B GRD 图像产品,并且每天

### 使用 Google Earth Engine API 下载 Sentinel-2 影像并提取叶面积分数 (FVC) #### 准备工作 为了能够顺利操作,需先安装 `earthengine-api` Python 库,并完成身份验证过程。这一步骤确保可以访问 GEE 平台上的资源。 ```bash pip install earthengine-api ``` 接着初始化地球引擎: ```python import ee ee.Initialize() ``` #### 定义研究区域和时间范围 定义感兴趣区(AOI),这里以中国为例设置地理边界;同时指定所需的时间窗口来筛选影像集合。 ```python aoi = ee.Geometry.Polygon( [[[108.79, 34.5], [108.79, 34.0], [110.46, 34.0], [110.46, 34.5]]]) start_date = '2023-01-01' end_date = '2023-01-31' ``` #### 获取 Sentinel-2 数据集 通过调用特定函数获取经过预处理哨兵多光谱产品(S2MSI2A), 这些图像是已经过大气校正且具有较高几何精度的产品[^1]。 ```python s2_sr = ee.ImageCollection('COPERNICUS/S2_SR') \ .filterBounds(aoi) \ .filterDate(start_date, end_date) \ .sort('CLOUDY_PIXEL_PERCENTAGE', False) ``` #### 计算植被覆盖度(Fractional Vegetation Cover,FVC) 基于归一化差异植被指数(NDVI) 来估算 FVC 值。此方法假设 NDVI 和 FVC 存在线性关系,在实际应用中可能需要根据不同地区调整参数取值。 ```python def add_ndvi(image): ndvi = image.normalizedDifference(['B8','B4']).rename('ndvi') return image.addBands(ndvi) fvc_image = s2_sr.map(add_ndvi).select('ndvi').mean() # 将 NDVI 转换为 FVC min_ndvi = 0.2 max_ndvi = 0.8 fvc = fvc_image.expression( '(ndvi-min)/(max-min)', { 'ndvi': fvc_image, 'min': min_ndvi, 'max': max_ndvi}).clamp(0, 1).multiply(100).toInt().rename('fvc') task = ee.batch.Export.image.toDrive({ 'image': fvc, 'description': 'Export_FVC', 'folder': 'GEE_Results', 'region': aoi.getInfo()['coordinates'], 'scale': 10, 'crs': 'EPSG:4326', }) task.start() print("任务已提交") ``` 上述代码片段实现了从 sentinel-2 中选取合适的波段组合计算 NDVI ,进而转换成 FVC 。最后导出结果到用户的谷歌云端硬盘账户下指定文件夹内[^2]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值