克拉美-劳界(Cramér-Rao Bound,CRB)及其修正型

1、克拉美-劳下界(Cramér-Rao Bound,CRB)

  CRB描述了一个无偏估计器的最小方差(或均方误差),即在给定某些数据的情况下,无偏估计器的方差不能低于CRB。CRB是一种理论上的下界,用于衡量一个估计器的最佳性能,在参数估计和信号处理领域有着广泛的应用。
  在以下情况下,CRB可能不能直接提供一个有用的估计器性能下界:

  1. 非线性参数估计。可以考虑使用MCRB或者其他类似的方法来解决。
  2. 非常规条件。CRB基于一些常规条件,例如参数是无偏估计、概率密度函数是可微的等。在不满足这些条件的情况下,CRB可能无法直接提供有用的估计器性能下界。在这些情况下,可以考虑使用其他方法,如对CRB 进行修正,以适应特定的问题和条件。
  3. 无穷方差。当估计器的方差趋向于无穷大时,CRB可能不会提供一个有用的下界。
  4. 离散参数。CRB 主要适用于连续参数估计问题。对于离散参数估计问题,CRB 可能无法直接提供一个有用的性能下界。

  对于接收信号 r ( t ) = s ( t ; γ ) + w ( t ) r(t)=s(t;\gamma)+w(t) r(t)=s(t;γ)+w(t),其中 γ \gamma γ表示一组未知的参数,可能包括 ν \nu ν θ \theta θ τ \tau τ和数据符号,但不一定包含所有这些参数。例如,如果传输一个训练序列,这些符号是已知的。为了简化讨论,我们集中讨论 { ν , θ , τ } \{\nu,\theta,\tau\} {ν,θ,τ}中单个元素的估计,待估计元素记为 λ \lambda λ,并被视为常量(确定但未知,不是随机变量)。因此,冗余参数的向量记为 u \boldsymbol{u} u,将包含数据符号加上 { ν , θ , τ } \{\nu,\theta,\tau\} {ν,θ,τ}中的两个元素。在基带传输的情况下,只有一个同步参数 τ \tau τ,并且 u \boldsymbol{u} u的唯一可能的组成部分是数据符号。

  考虑 λ \lambda λ(不一定是ML)的一般估计过程,设 λ ^ ( r ) \hat{\lambda}\left( \boldsymbol{r} \right) λ^(r)为相应的估计。如果它与 λ \lambda λ的真实值相符(对于 λ \lambda λ的任何允许值),那么我们就说这个估计是无偏的。误差 λ ^ ( r ) − λ \hat{\lambda}\left( \boldsymbol{r} \right) -\lambda λ^(r)λ可以达到的最小方差由Cramer-Rao界给出的,它是任何无偏估计量的方差的下限,表示为
V a r { λ ^ ( r ) − λ } ⩾ C R B ( λ ) \mathrm{Var}\left\{ \hat{\lambda}\left( \boldsymbol{r} \right) -\lambda \right\} \geqslant CRB\left( \lambda \right) Var{λ^(r)λ}CRB(λ)
其中
C R B ( λ ) ≜ − 1 E r { ∂ 2 ln ⁡ Λ ( r ∣ λ ) ∂ λ 2 } = 1 E r { [ ∂ ln ⁡ Λ ( r ∣ λ ) ∂ λ ] 2 } \begin{aligned} CRB(\lambda )&\triangleq -\frac{1}{\mathrm{E}_{\boldsymbol{r}}\left\{ \frac{\partial ^2\ln \Lambda (\boldsymbol{r}|\lambda )}{\partial \lambda ^2} \right\}}\\ &=\frac{1}{\mathrm{E}_{\boldsymbol{r}}\left\{ \left[ \frac{\partial \ln \Lambda (\boldsymbol{r}|\lambda )}{\partial \lambda} \right] ^2 \right\}}\\ \end{aligned} CRB(λ)Er{λ22lnΛ(rλ)}1=Er{[λlnΛ(rλ)]2}1
E r { ⋅ } \mathrm{E}_{\boldsymbol{r}}\left\{ \cdot \right\} Er{}是观测信号向量关于待估计参数的期望。
  然而,由于计算 Λ ( r ∣ λ ~ ) \Lambda (\boldsymbol{r}|\tilde{\lambda}) Λ(rλ~)的必要性,CRB很难应用于实际的同步问题。因为这个函数是通过对 Λ ( r ∣ λ ~ , u ) \Lambda (\boldsymbol{r}|\tilde{\lambda},\boldsymbol{u}) Λ(rλ~,u)中冗余参数求期望得到的。
Λ ( r ∣ λ ~ ) = ∫ − ∞ ∞ Λ ( r ∣ λ ~ , u ~ ) p ( u ~ ) d u ~ \Lambda (\boldsymbol{r}|\tilde{\boldsymbol{\lambda}})=\int\limits_{-\infty}^{\infty}{\Lambda}(\boldsymbol{r}|\tilde{\boldsymbol{\lambda}},\tilde{\boldsymbol{u}})p(\tilde{\boldsymbol{u}})d\tilde{\boldsymbol{u}} Λ(rλ~)=Λ(rλ~,u~)p(u~)du~
计算 Λ ( r ∣ λ ~ ) \Lambda (\boldsymbol{r}|\tilde{\lambda}) Λ(rλ~)或者期望 E r { [ ∂ ln ⁡ Λ ( r ∣ λ ) ∂ λ ] 2 } {\mathrm{E}_{\boldsymbol{r}}\left\{ \left[ \frac{\partial \ln \Lambda (\boldsymbol{r}|\lambda )}{\partial \lambda} \right] ^2 \right\}} Er{[λlnΛ(rλ)]2}在实际同步问题中通常是不可行的,解决这一缺点的一种途径是求助于修正的Cramer-Rao界(MCRB),它仍然适用于任何无偏估计量。

2、修正的克拉美-劳界(Modified Cramér-Rao Bound,MCRB)

  MCRB是CRB的一种改进方法。MCRB通常被用来解决在某些情况下CRB的局限性,例如当标准CRB不适用或者在具有非线性参数估计问题的情况下,MCRB可以提供一个更为实际且准确的性能下界,以更好地指导估计器的设计和评估。
V a r { λ ^ ( r ) − λ } ⩾ M C R B ( λ ) \mathrm{Var}\left\{ \hat{\lambda}\left( \boldsymbol{r} \right) -\lambda \right\} \geqslant MCRB\left( \lambda \right) Var{λ^(r)λ}MCRB(λ)
  对于通带信号有
M C R B ( λ ) ≜ N 0 E u { ∫ 0 T 0 ∣ ∂ s ( t , λ , u ) ∂ λ ∣ 2 d t } MCRB(\lambda )\triangleq \frac{N_0}{\mathrm{E}_{\boldsymbol{u}}\left\{ \int\limits_0^{T_0}{\left| \frac{\partial s(t,\lambda ,\boldsymbol{u})}{\partial \lambda} \right|^2}dt \right\}} MCRB(λ)Eu{0T0 λs(t,λ,u) 2dt}N0
  对于基带信号有
M C R B ( λ ) ≜ N 0 / 2 E u { ∫ 0 T 0 ∣ ∂ s ( t , λ , u ) ∂ λ ∣ 2 d t } MCRB(\lambda )\triangleq \frac{N_0/2}{\mathrm{E}_{\boldsymbol{u}}\left\{ \int\limits_0^{T_0}{\left| \frac{\partial s(t,\lambda ,\boldsymbol{u})}{\partial \lambda} \right|^2}dt \right\}} MCRB(λ)Eu{0T0 λs(t,λ,u) 2dt}N0/2
  其中 C R B ( λ ) CRB(\lambda) CRB(λ) M C R B ( λ ) MCRB(\lambda) MCRB(λ)的关系为
C R B ( λ ) ≥ M C R B ( λ ) CRB(\lambda )\ge MCRB(\lambda ) CRB(λ)MCRB(λ)
在这里插入图片描述

等式只在两种特殊情况下成立:当完全 u \boldsymbol{u} u已知或为空(没有不必要的参数)。

   C R B ( λ ) CRB(\lambda) CRB(λ) M C R B ( λ ) MCRB(\lambda) MCRB(λ)在以下情况下重合:
  (1)当 ν \nu ν τ \tau τ和数据已知时,对 θ \theta θ的估计;
  (2)当 ν \nu ν θ \theta θ和数据已知时,对 τ \tau τ的估计;
  (3)当 τ \tau τ和差分数据可用但 θ \theta θ未知时,M-PSK调制对 ν \nu ν的估计。

3、基于无迹变换(Unscented Transform,UT)的改进型克拉美罗-劳下界(Unscented Cramér-Rao Bound,UCRB)

  UCRB是一种基于无迹变换的改进型克拉美-劳下界,适用于非线性参数估计问题,尤其是在高斯分布假设下的非线性问题。UCRB的提出是也解决了CRB在非线性参数估计问题中的局限性。
  无迹变换是一种用于非线性滤波和参数估计问题的方法,它通过选择一组称为“无迹点”的采样点来近似非线性变换的均值和协方差。这些无迹点的选择使得在非线性变换后,高斯分布的均值和协方差能够保持一致。UCRB 利用无迹变换来近似非线性参数估计问题中的费舍尔信息矩阵(Fisher Information Matrix,FIM)。通过这种方式,UCRB 能够更准确地估计非线性问题的性能下界,从而为非线性估计器的设计和评估提供有用的信息。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值