原理:如果两个数组的后缘维度(从末尾开始算起的维度)的轴长度相符或其中一方的长度为1,则认为它们是广播兼容的,广播会在缺失维度或者轴长度为1的维度上进行。
举例说明:
import numpy as np
arr = np.random.randn(4, 3) # -> shape=(4, 3)
首先通过计算说明什么是缺失维度
demeaned = arr - arr.mean(axis=0)
# -> shape=(4, 3) - shape=(3, ) = shape=(4, 3)
通过上面的例子看到,demeaned的维度是(4, 3),因为arr和arr.mean的后缘维度的轴长度相同(从后往前数,第一维的长度都是3),所以可以进行广播,此时,arr.mean会自动添加一维,即在列方向上广播为4行,最终shape变为(4, 3),对于arr.mean来说,axis=0就是缺失维度,因为arr的3和arr.mean的3作为后缘维度的轴长度,后缘维度必须的同一维度,即必须是axis=1。
另一个例子
a = np.array([1, 2, 3]) # -> shape=(3, )
b = np.array([[1,], [2,], [3,]) # -> shape=(3, 1)
b -a # -> shape=(3, 3)
首先,b有一维的长度是1,所以b会在该维度进行广播,shape变为(3, 3),此时b和a的后缘维度的长度又相同了,那么a会在缺失维度进行广播,shape也变为(3,3)。