3.8 腔壁损耗
不管是常温腔还是超导腔的主要损耗都为非理想导体腔壁的欧姆损耗。
因为这些损耗通常很小,所以我们一般通过微扰的方法来计算。
金属壁表面的切向磁场可以等效为表面电流,并且这些电流只是集中在趋肤深度内,而并非整个金属壁的深度。
J ⃗ A = n ⃗ × H ⃗ ( A / m ) \vec{J}_{A}=\vec{n}\times\vec{H} (A/m) JA=n×H(A/m)
切向磁场导致的表面电流会看到一个表面电阻
R
A
(
Ω
)
R_A(Ω)
RA(Ω),这回导致一个切线方向的小的切线电压降,从而导致了电阻的欧姆损耗。
R
A
=
ω
μ
2
σ
R_{A}=\sqrt{\frac{\omega\mu}{2\sigma}}
RA=2σωμ
我们知道坡印廷矢量描述了电磁波的能量流动(能流 energy flux)的方向和大小。
S
⃗
=
1
μ
E
⃗
×
B
⃗
\vec{S} = \frac{1}{\mu} \vec{E} \times \vec{B}
S=μ1E×B
坡印廷矢量是一个复数矢量,它的实数部分代表着腔的损耗部分对应的能流密度。
如果我们只看切线方向的磁场(垂直腔壁方向的电场)对应的波印廷矢量有:
S
⃗
H
t
,
E
⊥
=
ℜ
{
R
A
H
⃗
t
⋅
H
⃗
t
∗
}
=
1
2
R
A
∣
H
t
∣
2
\vec{S}_{H_t,E_{\perp}}=\Re\bigl\{R_{A}\vec{H}_{t}\cdot\vec{H}_{t}^{*}\bigr\}=\frac{1}{2}R_{A}|H_{t}|^{2}
SHt,E⊥=ℜ{RAHt⋅Ht∗}=21RA∣Ht∣2
在腔的表面对上面的能流密度的分量进行闭合曲面积分可以得到腔壁损耗:
P
wall
=
1
2
∯
wall
R
A
∣
H
t
∣
2
d
A
P_{\text{wall}}=\frac{1}{2}\oiint\limits_{\text{wall}}R_A|H_t|^2\mathrm{d}A
Pwall=21wall∬RA∣Ht∣2dA
表面电阻和趋肤深度的关系如下:
R
A
=
1
δ
σ
R_A=\frac{1}{\delta\sigma }
RA=δσ1
其中
δ
\delta
δ为趋肤深度。
σ
\sigma
σ为金属壁的电导率。
室温下铜的电导率≈5.8*10e7 S/m,此时对应1GHz频率的 R A R_A RA≈8 mΩ,由公式 R A = ω μ 2 σ R_{A}=\sqrt{\frac{\omega\mu}{2\sigma}} RA=2σωμ可知表面电阻与频率的平方根成正比。
而2K低温下的1GHz铜的 R A R_A RA≈10 nΩ。通常用超导腔更习惯用符号 R S R_S RS表示表面电阻,并且超导态的 R S R_S RS与频率的平方成正比,而不是平方根。
上面我们讨论了腔壁的损耗,此外还有其它的损耗。
其中包括由耦合器导致外部的损耗,介质损耗,磁性材料导致的损耗,辐射损耗,等。
腔的损耗与储能成正比,与加速电压的平方成正比。
因此我们定义品质因数Q:
Q
=
ω
0
W
P
Q=\frac{\omega_0W}{P}
Q=Pω0W
其为储能和能量损耗的比值。
大的Q意味着维持相同的储能需要的功率源的功率越小。
有载品质因数 Q L Q_L QL和空载品质因数 Q 0 Q_0 Q0:
- 有载品质因数是指振荡系统在连接负载时的品质因数。对于超导腔或其他谐振器,有载品质因数表示在实际使用过程中,考虑了系统与外部环境的耦合和损耗后的品质因数。有载品质因数考虑了系统的全部损耗,包括外部耦合损耗、内部材料损耗等。
- 空载品质因数是指振荡系统在未连接负载时的品质因数。对于超导腔或其他谐振器,空载品质因数表示在理想情况下,系统在没有连接到外部环境或负载的情况下的品质因数。
显然通常情况下,有载品质因数
Q
L
Q_L
QL比空载品质因数
Q
0
Q_0
Q0,更低,因为在实际工作状态下,系统会有更多的损耗,它们有如下的关系式:
1
Q
L
=
P
w
a
l
l
+
P
e
x
t
+
⋯
ω
0
W
=
1
Q
0
+
1
Q
e
x
t
+
1
.
.
.
\frac1{Q_\mathrm{L}}=\frac{P_\mathrm{wall}+P_\mathrm{ext}+\cdots}{\omega_0W}=\frac1{Q_0}+\frac1{Q_\mathrm{ext}}+\frac1{...}
QL1=ω0WPwall+Pext+⋯=Q01+Qext1+...1
空载品质
Q
0
Q_0
Q0通常只表征了腔壁损耗。
Q
e
x
t
Q_\mathrm{ext}
Qext外部品质因数通常表征与谐振腔体耦合的元件导致的损耗。主要包括:
- 耦合器引起的损耗:功率耦合器与谐振腔之间的耦合引起的能量损耗。
- 辐射损耗: 由于电磁辐射通过腔体的开口或其他开放结构而引起的能量损耗。
- 其他传输线或耦合结构引起的损耗: 如果系统与其他传输线或耦合结构相连,例如微波传输线、连接器等,这些结构也可能会引起能量损耗。
常温铜腔的
Q
0
Q_0
Q0通常为
1
0
3
.
.
.
1
0
6
10^3 ... 10^6
103...106的量级。
超导腔的
Q
0
Q_0
Q0通常为
1
0
9
.
.
.
1
0
1
1
10^9 ... 10^11
109...1011的量级。
定义耦合因子 β \beta β为 P e x t / P w a l l P_{ext}/P_{wall} Pext/Pwall。
可以得到
Q
L
Q_L
QL和$Q_0的关系式为:
Q
L
=
Q
0
(
1
+
β
)
Q_\mathrm{L}=\frac{Q_0}{(1+\beta)}
QL=(1+β)Q0
定义分路阻抗:
R
=
(
R
Q
)
Q
=
∣
V
a
c
c
∣
2
2
P
R=\left(\frac{R}{Q}\right)Q=\frac{|V_{\mathrm{acc}}|^2}{2P}
R=(QR)Q=2P∣Vacc∣2
分路阻抗越大则意味着越大的加速电压。
但是分路阻抗也表示系统对外部负载的阻抗,在加速器物理中,分路阻抗也是束流能够看到的阻抗。
因此在束流较大时,较大的分路阻抗将会感应出较大的束流感应电压(beam-induced voltage)。
定义几何因子:
G
=
Q
0
⋅
R
s
G=Q_0\cdot R_s
G=Q0⋅Rs
由于
Q
0
Q_0
Q0反比于表面电阻
R
s
R_s
Rs因此有空载品质因子的定义可知,几何因子与表面电阻无关,即与腔的损耗无关,并且与腔的尺寸和材料也没有关系。
几何因子仅与腔的形状相关。
由于Q是一个无量纲的单位,因此几何因子的单位为欧姆。
举个例子,超导椭球腔的几何因子≈275Ω,pillbox的几何因子≈100Ω。
3.9 等效电路
RF高频腔可以用如下的电路等效:
等效电路的R即分路阻抗。
Rg为功率源的内阻,通常功率源的内阻与负载阻抗即R,需要相等,即工作在匹配状态,此时,耦合因子 β \beta β等于1。
R g = R / β R_g=R/\beta Rg=R/β
如果 β \beta β大于1,则为过耦合, β \beta β小于1则为欠耦合。
R、L、C组成了并联谐振电路,代表RF射频腔。
并联谐振电路的节点电压则为加速电压。
有如下的方程:
( 1 R + j ω C + 1 j ω L ) ⋅ V a c c = I G + I B \left(\frac{1}{R}+j\omega C+\frac{1}{j\omega L}\right)\cdot V_{\mathrm{acc}}=I_{\mathrm{G}}+I_{\mathrm{B}} (R1+jωC+jωL1)⋅Vacc=IG+IB
根据
Q
0
Q_0
Q0的定义(储能和能量损耗的比),在谐振电路中
Q
0
Q_0
Q0可以表示为感抗和阻抗的比值,即
j
ω
0
L
/
R
j\omega_0L/R
jω0L/R,也可以表示为容抗和阻抗的比值,即
1
j
ω
0
C
R
\frac{1}{j\omega_0CR}
jω0CR1
代入:
Q
0
=
R
L
/
Q
Q_0=\frac{R}{\sqrt{L/Q}}
Q0=L/QR
和
谐振频率
ω
0
=
1
L
C
\omega_0=\frac{1}{\sqrt{LC}}
ω0=LC1
的表达式,可以得到如下的等式:
(
1
R
+
j
ω
C
+
1
j
ω
L
)
⋅
V
a
c
c
=
1
R
(
1
+
j
Q
0
(
ω
ω
0
−
ω
0
ω
)
)
⋅
V
a
c
c
=
I
G
+
I
B
\left(\frac{1}{R}+j\omega C+\frac{1}{j\omega L}\right)\cdot V_{\mathrm{acc}}=\frac{1}{R}\Bigg(1+jQ_{0}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\Bigg)\cdot V_{\mathrm{acc}}=I_{\mathrm{G}}+I_{\mathrm{B}}
(R1+jωC+jωL1)⋅Vacc=R1(1+jQ0(ω0ω−ωω0))⋅Vacc=IG+IB
如果等式的右边为0,即腔断开功率源,且也没有束流,则等式变为:
1
+
j
Q
0
(
ω
ω
0
−
ω
0
ω
)
=
0
1+jQ_{0}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) = 0
1+jQ0(ω0ω−ωω0)=0
求解频率
ω
\omega
ω
可以得到一个特征频率:
ω
r
=
ω
0
1
−
1
4
Q
0
2
+
j
ω
0
2
Q
0
\omega_\mathrm{r}=\omega_0\sqrt{1-\frac{1}{4Q_0^2}}+j\frac{\omega_0}{2Q_0}
ωr=ω01−4Q021+j2Q0ω0
这个特征解描述了一个阻尼振荡,其衰减曲线为 e ( − ω 0 t 2 Q ) e^{\left(-\frac{\omega_0t}{2Q}\right)} e(−2Qω0t)。
最后给出等效电感和电容的表达式:
L
=
R
Q
0
ω
0
,
C
=
Q
0
R
ω
0
L=\frac{R}{Q_0\omega_0},\quad C=\frac{Q_0}{R\omega_0}
L=Q0ω0R,C=Rω0Q0