RF高频腔设计(3)

我们从能量守恒的角度来通俗地理解波导。
波从波源A点产生,如果是在自由空间传输,则波是以球面的形式扩散,要传输到1000米后的B点,则球面积变为了 4 ∗ π ∗ r 2 4*\pi*r^2 4πr2,假设接收能量的入口面积为100平方厘米,则接收到的能量只有 1 1 0 − 8 \frac{1}{10^{-8}} 1081

而换一种方式,我们通过一根管道来传输,如果不考虑介质的损耗,则有可能实现接近100%的能量传输。

但是波在管道传输是来回反射传播的,不同的波束之间有相互的干扰,如果波峰恰好遇到波峰,则波会增强,如果每次都如此,则波会一直传播下去。如果波峰遇到波谷,则波会湮灭,则无法传播下去。因此只有特定模式的波可以在波导中传播。
以上是我个人对波导的通俗的理解。

3.3 圆波导

之前的方波导的构建是从两个平面波的叠加开始的。
现在考虑无穷个平面波的叠加, 1 2 π ∫ d α {\frac{1}{2\pi}}\int{\mathrm{d}}\alpha 2π1dα,并在圆柱坐标中分析:

之前的
E y ∝ ( cos ⁡ ( ω t − ω c ( z cos ⁡ α + x sin ⁡ α ) ) + cos ⁡ ( ω t − ω c ( z cos ⁡ α − x sin ⁡ α ) ) ) = 2 cos ⁡ ( ω c sin ⁡ α x ) cos ⁡ ( ω t − ω c cos ⁡ α z ) = 2 cos ⁡ ( k ⊥ x ) cos ⁡ ( ω t − k z z ) E_{y}\propto\left(\cos\left(\omega t-\frac{\omega}{c}(z\cos\alpha+x\sin\alpha)\right)+\cos\left(\omega t-\frac{\omega}{c}(z\cos\alpha-x\sin\alpha)\right)\right)\\=2\cos\left(\frac{\omega}{c}\sin\alpha x\right)\cos\left(\omega t-\frac{\omega}{c}\cos\alpha z\right)=2\cos(k_{\perp}x)\cos(\omega t-k_{z}z) Ey(cos(ωtcω(zcosα+xsinα))+cos(ωtcω(zcosαxsinα)))=2cos(cωsinαx)cos(ωtcωcosαz)=2cos(kx)cos(ωtkzz)
变为
1 2 π ∫ 2 cos ⁡ ( ω c sin ⁡ α x ) cos ⁡ ( ω t − ω c cos ⁡ α z ) d α \frac{1}{2\pi}\int2\cos\left(\frac{\omega}{c}\sin\alpha x\right)\cos\left(\omega t-\frac{\omega}{c}\cos\alpha z\right)d\alpha 2π12cos(cωsinαx)cos(ωtcωcosαz)dα
代入圆柱坐标:
x = ρ sin ⁡ ϑ , z = ρ cos ⁡ ϑ x=\rho\sin\vartheta,z=\rho\cos\vartheta x=ρsinϑ,z=ρcosϑ
得到:
1 2 π ∫ 0 2 π cos ⁡ ( k ρ ( cos ⁡ α cos ⁡ ϑ + sin ⁡ α sin ⁡ ϑ ) ) d α = 1 2 π ∫ 0 2 π cos ⁡ ( k ρ ( cos ⁡ ( α − ϑ ) ) ) d ( α − ϑ ) = J 0 ( k ρ ) \begin{aligned}\frac{1}{2\pi}\int_{0}^{2\pi}\cos(k\rho(\cos\alpha\cos\vartheta+\sin\alpha\sin\vartheta))\mathrm{d}\alpha=\frac{1}{2\pi}\int_{0}^{2\pi}\cos\bigl(k\rho\bigl(\cos(\alpha-\vartheta)\bigr)\bigr)\mathrm{d}(\alpha-\vartheta)=J_{0}(k\rho)\end{aligned} 2π102πcos(kρ(cosαcosϑ+sinαsinϑ))dα=2π102πcos(kρ(cos(αϑ)))d(αϑ)=J0(kρ)
这是贝塞尔函数 𝐽₀ 的积分表示。如下图,我们现在得到了一个由贝塞尔函数 𝐽₀ 描述的径向驻波模式。由于贝塞尔函数 𝐽₀ 的零点,存在一些径向位置,电场始终为零。在这些半径处,可以插入理想导电的边界条件,而不会扰乱这种场分布,这样我们就可以构建一个圆形波导!
贝塞尔函数的积分表示
TM模式,截止频率 ω c \omega_c ωc与波导半径的关系为:
ω c c = χ m , n a \frac{\omega_\mathrm{c}}{c}=\frac{\chi_{m,n}}{a} cωc=aχm,n
其中 χ m , n \chi_{m,n} χm,n是m阶贝塞尔函数的第n个零点。
TE模式,截止频率 ω c \omega_c ωc与波导半径的关系为:
ω c c = χ m , n ′ a \frac{\omega_\mathrm{c}}{c}=\frac{\chi_{m,n}^{\prime}}{a} cωc=aχm,n
其中 χ m , n ′ \chi_{m,n}^{\prime} χm,n是m阶贝塞尔函数导数的第n个零点。

我们可以将电磁波理解为一只老鼠,波长为老鼠的大小,去钻一个管道,频率越小,则波长越大,则老鼠越大,到了截止频率,则老鼠就卡住进不去了。

这也是为什么在很多电脑和电子射频的金属外壳上有很多小孔的原因,可以增加散热,同时因为孔很小,可以挡住电磁波的泄漏,起到电磁屏蔽的作用。

我们可以看到在半径 α \alpha α固定的情况下,模式的截止频率和贝塞尔函数或贝塞尔函数的导数的零点成正比。
圆波导的最低阶模式为TE11,此时 χ 1 , 1 ′ = 1.84118 \chi_{1,1}^{\prime}=1.84118 χ1,1=1.84118
最低阶的TM模式为TM01,此时 χ 0 , 1 = 2.40483 \chi_{0,1}=2.40483 χ0,1=2.40483
圆形波导模式
圆形波导模式

3.4 矩形波导和圆波导

通过横向特征函数 𝑇 可以将波导推广到具有任意横截面的情况。
横向的波动方程为:
Δ T + ( ω c c ) 2 T = 0 \Delta T+\left(\frac{\omega_{\mathrm{c}}}{c}\right)^{2}T=0 ΔT+(cωc)2T=0
符号 △ 表示 Laplace 算子,也称为拉普拉斯算子,通常用于描述空间中的二阶偏微分。
∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} 2=x22+y22+z22

矩形波导TE的横向特征函数为:
T m n = 1 π a b ε m ε n ( m b ) 2 + ( n a ) 2 cos ⁡ ( m π a x ) cos ⁡ ( n π b y ) T_{mn}=\dfrac{1}{\pi}\sqrt{\dfrac{ab\varepsilon_m\varepsilon_n}{(mb)^2+(na)^2}}\cos\left(\dfrac{m\pi}{a}x\right)\cos\left(\dfrac{n\pi}{b}y\right) Tmn=π1(mb)2+(na)2abεmεn cos(ax)cos(by)
矩形波导TM的横向特征函数为:
T m n = 2 π a b ( m b ) 2 + ( n a ) 2 sin ⁡ ( m π a x ) sin ⁡ ( n π b y ) T_{mn}=\frac{2}{\pi}\sqrt{\frac{ab}{(mb)^{2}+(na)^{2}}}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) Tmn=π2(mb)2+(na)2ab sin(ax)sin(by)
圆波导的TE横向特征函数为:
T m n = ε m π ( χ m n ′ 2 − m 2 ) J m ( χ m n ′ ρ a ) J m ( χ m n ′ ) { cos ⁡ ( m φ ) sin ⁡ ( m φ ) } T_{mn}=\sqrt{\frac{\varepsilon_{m}}{\pi(\chi_{mn}^{\prime2}-m^{2})}}\frac{J_{m}\left(\chi_{mn}^{\prime}\frac{\rho}{a}\right)}{J_{m}(\chi_{mn}^{\prime})}\begin{Bmatrix}\cos(m\varphi)\\\sin(m\varphi)\end{Bmatrix} Tmn=π(χmn′2m2)εm Jm(χmn)Jm(χmnaρ){cos(mφ)sin(mφ)}
圆波导的TM横向特征函数为:
T m n = ε m π J m ( χ m n ρ a ) J m − 1 ( χ m n ) { sin ⁡ ( m φ ) } T_{mn}=\sqrt{\frac{\varepsilon_{m}}{\pi}}\frac{J_{m}\left(\chi_{mn}\frac{\rho}{a}\right)}{J_{m-1}(\chi_{mn})}\left\{\sin(m\varphi)\right\} Tmn=πεm Jm1(χmn)Jm(χmnaρ){sin(mφ)}
每种模式的纵向横电场和磁场分布由函数 𝑈(𝑧) 和 𝐼(𝑧) 描述。
𝑈(𝑧) 和 𝐼(𝑧) 是从纵向波动方程中导出的,此外还可以导出特征阻抗 𝑍₀
d U ( z ) d z + j k z Z 0 I ( z ) = 0 , d I ( z ) d z + j k z Z 0 U ( z ) = 0 \frac{\mathrm{d}U(z)}{\mathrm{d}z}+jk_{z}Z_{0}I(z)=0,\quad\frac{\mathrm{d}I(z)}{\mathrm{d}z}+\frac{jk_{z}}{Z_{0}}U(z)=0 dzdU(z)+jkzZ0I(z)=0,dzdI(z)+Z0jkzU(z)=0


推导过程如下:
欧姆定律:
J = σ E \mathbf{J} = \sigma \mathbf{E} J=σE
理想波导中忽略电流密度,则有:
0 = σ E 0 = \sigma \mathbf{E} 0=σE
理想波导中E和H沿着波导轴向方向传播,因此它们只依赖于z和t。
Maxwell’s 梯度方程:
∇ × E = − μ ∂ H ∂ t \nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} ×E=μtH
∇ × H = ε ∂ E ∂ t \nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t} ×H=εtE
可变换为:
∂ E z ∂ t = − μ ∂ H z ∂ z \frac{\partial E_z}{\partial t} = -\mu \frac{\partial H_z}{\partial z} tEz=μzHz
∂ H z ∂ t = ε ∂ E z ∂ z \frac{\partial H_z}{\partial t} = \varepsilon \frac{\partial E_z}{\partial z} tHz=εzEz
将磁场和电场表示为电压和电流的形式有:

  1. 电场 E z = − d U d z E_z = -\frac{\mathrm{d}U}{\mathrm{d}z} Ez=dzdU
  2. 磁场 H z = Z 0 I H_z = Z_0 I Hz=Z0I
    其中 Z 0 = μ ε Z_0 = \sqrt{\frac{\mu}{\varepsilon}} Z0=εμ 是波导的特征阻抗。
    将其代入上面的方程有:
    − ∂ ∂ t ( − d U d z ) = − μ ∂ ∂ z ( Z 0 I ) ⇒ d U d z = j k z Z 0 I -\frac{\partial}{\partial t}\left(-\frac{\mathrm{d}U}{\mathrm{d}z}\right) = -\mu \frac{\partial}{\partial z}(Z_0 I) \Rightarrow \frac{\mathrm{d}U}{\mathrm{d}z} = jk_z Z_0 I t(dzdU)=μz(Z0I)dzdU=jkzZ0I
    ∂ ∂ t ( Z 0 I ) = ε ∂ ∂ z ( − d U d z ) ⇒ d I d z = j k z Z 0 U \frac{\partial}{\partial t}(Z_0 I) = \varepsilon \frac{\partial}{\partial z}\left(-\frac{\mathrm{d}U}{\mathrm{d}z}\right) \Rightarrow \frac{\mathrm{d}I}{\mathrm{d}z} = \frac{jk_z}{Z_0} U t(Z0I)=εz(dzdU)dzdI=Z0jkzU

  • 9
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_43354598

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值