Leetcode892:三维形体的表面积(java)

题目描述

在 N * N 的网格上,我们放置一些 1 * 1 * 1 的立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在对应单元格 (i, j) 上。
请你返回最终形体的表面积。

示例 1:

输入:[[2]]
输出:10
在这里插入图片描述
示例 2:

输入:[[1,2],[3,4]]
输出:34
在这里插入图片描述
示例 3:

输入:[[1,0],[0,2]]
输出:16
在这里插入图片描述
示例 4:

输入:[[1,1,1],[1,0,1],[1,1,1]]
输出:32
在这里插入图片描述
示例 5:

输入:[[2,2,2],[2,1,2],[2,2,2]]
输出:46
在这里插入图片描述

思路分析

首先,一个柱体一个柱体的看,每个柱体是由:2个底面(上表面/下表面)+ 所有的正方体都贡献了4个侧表面积。
然后,把柱体贴合在一起之后,我们需要把贴合的表面积给减掉,两个柱体贴合的表面积就是 两个柱体高的最小值*2。

代码实现

package LanqiaoVip;

public class SurfaceArea {

	public static void main(String[] args) {

	}

	public int surfaceArea(int[][] grid) {
		int n = grid.length, area = 0;
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < n; j++) {
				// 先把grid[i][j]赋值给level,省掉了bound check,可以略微略微略微优化一下耗时。。。
				int level = grid[i][j];
				if (level > 0) {
					// 一个柱体中:2个底面 + 所有的正方体都贡献了4个侧表面积
					area += (level << 2) + 2;
					// 减掉i与i-1相贴的两份表面积
					area -= i > 0 ? Math.min(level, grid[i - 1][j]) << 1 : 0;
					// 减掉j与j-1相贴的两份表面积
					area -= j > 0 ? Math.min(level, grid[i][j - 1]) << 1 : 0;
				}
			}
		}
		return area;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sparky*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值