题目描述
在 N * N 的网格上,我们放置一些 1 * 1 * 1 的立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在对应单元格 (i, j) 上。
请你返回最终形体的表面积。
示例 1:
输入:[[2]]
输出:10
示例 2:
输入:[[1,2],[3,4]]
输出:34
示例 3:
输入:[[1,0],[0,2]]
输出:16
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]]
输出:32
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]]
输出:46
思路分析
首先,一个柱体一个柱体的看,每个柱体是由:2个底面(上表面/下表面)+ 所有的正方体都贡献了4个侧表面积。
然后,把柱体贴合在一起之后,我们需要把贴合的表面积给减掉,两个柱体贴合的表面积就是 两个柱体高的最小值*2。
代码实现
package LanqiaoVip;
public class SurfaceArea {
public static void main(String[] args) {
}
public int surfaceArea(int[][] grid) {
int n = grid.length, area = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// 先把grid[i][j]赋值给level,省掉了bound check,可以略微略微略微优化一下耗时。。。
int level = grid[i][j];
if (level > 0) {
// 一个柱体中:2个底面 + 所有的正方体都贡献了4个侧表面积
area += (level << 2) + 2;
// 减掉i与i-1相贴的两份表面积
area -= i > 0 ? Math.min(level, grid[i - 1][j]) << 1 : 0;
// 减掉j与j-1相贴的两份表面积
area -= j > 0 ? Math.min(level, grid[i][j - 1]) << 1 : 0;
}
}
}
return area;
}
}