分布式事务一

一、事务

  • 一个大的事务,包含多个小的活动,要么都成功,要么都失败

1. 本地事务

  • 通过关系型数据库来控制事务
  • 事务四大特性: ACID
A(Atomic): 原子性,构成事务的所有操作,要么都执行完成,要么都不执行

C(Consistency): 一致性,事务执行前后,数据库的一致约束没有遭到破坏

I(Isolation): 隔离性。数据库的事务一般都是并发的,并发的两个事务的执行
              互不干扰,一个事务不能看到其他事务运行过程的中间状态
              可以通过事务级别来控制

D(Duration): 持久性,事务完成之后,该事务对数据的更改会被持久化到数据库

2. 分布式事务

  • 应用拆分后,不同服务间通过远程协作,完成事务称为分布式事务
# 服务调用超时引发的问题
# 1. 跨jvm调用
工商银行张三给建设银行李四转钱
1.工商银行扣款100,同时调用建设银行李四加100
2. 如果调用失败,则工商银行回滚
3. 如果调用超时了,但是实际上李四已经加款成功了
4. 工商银行依然会滚了,导致张三没扣钱,但是李四加钱了

# 2.单体系统,调用多个数据库产生

# 3. 多系统,调用同一个数据产生

二、CAP

1. C-Consistency

  • 写操作后的读操作可以读取到最新的状态
  • 当数据库分布在多个节点上时,从任意节点读取到的数据都是最新状态
# 1.场景
- 服务向主数据写入成功,则向从数据库查询数据也成功

# 2. 实现
- 写入主数据库后,将数据同步到从数据库
- 在从主数据库向从数据库同步的时候,将从数据库锁定,待同步完成后再释放锁
- 避免在新数据写入成功后,在从数据库查到旧的数据

# 3. 分布式系统一致性的特点
- 存在数据同步的过程,写操作的响应会有一定的延迟
- 为了保证数据一致性会对资源暂时锁定,待数据同步完成后释放锁资源
- 如果请求数据同步的操作失败,从节点一定要返回错误信息,而不是旧数据

2. A-Avaliablity

  • 任何事务操作,都可以得到响应结果,且不会出现响应超时或响应错误
# 1. 场景
- 从数据库接受到数据查询的请求后,立即响应数据查询结果
- 从数据库不允许出现响应超时或响应错误

# 2. 实现
- 写入主数据库后要将数据同步到从数据库
- 保证从数据库的可用性,不可将从数据库的资源进行锁定
- 即使数据还没同步过来,从数据库也要返回要查询的数据,哪怕是旧数据,
  如果旧数据都没有,则可以按照约定返回一个默认信息,但不能返回错误或响应超时

# 3. 分布式系统可用性
- 所有请求都有响应,且不会出现响应超时或响应错误

3. P - Partition tolerance

  • 分布式系统各节点部署在不同子网,这就是网络分区
  • 因为网络问题导致节点间通信失败,但此时仍然要对外提供服务,这叫分区容忍性
# 1. 场景
- 主数据库向从数据库同步数据失败,不影响读写操作
- 其中一个结点挂掉,不影响其他节点对外提供服务

# 2. 实现
- 尽量使用异步取代同步操作,节点间实现松耦合
- 添加从数据节点,其中一个从节点挂掉,其它从节点提供服务

# 3. 分布式分区容忍性特点
- 分区容忍性事分布式系统具备的基本能力

4. 组合方式

  • 所有分布式事务场景中,不会同时具备CAP三个特性
  • 因为在具备了P的条件下C和A是不能共存的

4.1 AP

  • 放弃一致性,追求分区容忍性和可用性,这是很多分布式系统选择的
  • 比如商品管理,允许用户查询到旧的数据(用户也明白存在时间差)

4.2 CP

  • 放弃可用性,追求一致性和分区容忍性能
  • 比如跨行转账

4.3 CA

  • 放弃分区容忍性,即不进行分区,可以用单纯的关系型数据库解决
  • 这就是放弃了分布式

三、Base理论

1. 强一致性和最终一致性

  • 强一致性:CAP理论中的C
  • 最终一致性:在保证A的时候,过一段时间,保证数据的C即可
  • 有些场景可以不需要强一致性,但是可以使用最终一致性即可

2. Base理论

  • Basically Avaliable:基本可用
  • Soft state:软状态
  • Eventually consistent: 最终一致性
  • 是AP的一个扩展
通过牺牲强一致性来获得可用性,允许数据在一段时间内是不一致的
最终达到一致状态。满足Base理论的事务叫     柔性事务

基本可用:分布式系统故障时,允许损失部分可用功能,保证核心功能可见

软状态:不要求强一致性,所以允许出现中间状态(软状态)
       比如订单的‘支付中’,‘数据同步中’,数据一致后‘成功’

最终一致性: 经过一段时间后,所有节点数据都将达到一致
      比如‘支付成功’, ‘支付失败’,但需要一定时间延迟

四、两阶段提交

1. 理论

  • 基于数据库的两阶段协议来进行支持的

1.1 准备阶段

  • 事物管理器给每个参与者发送prepare消息,每个数据库参与者在本地执行事务,并写本地的undo/redo日志,此时事务没有提交

1.2 提交阶段

  • 如果事务管理器收到了参与者的执行失败或者超时消息,直接给每个参与者发送回滚消息
  • 否则,发送提交消息
  • 参与者根据事务管理器的指令执行提交或者回滚操作,并释放事物处理过程中使用的锁资源
  • 必须在最后阶段释放锁资源

在这里插入图片描述

2. XA方案

  • 2pc的传统方案是在数据库层面实现的,如oracle,mysql都支持2pc协议
  • 缺点:必须基于数据库的2px协议,两阶段模式需要加锁
DTP: Distributed Transancation Processing Reference Model
     - 分布式事务处理模型,包含3个角色

AP: Application Program,应用程序
   使用DTP分布式事务的程序

RM: Resource Manager, 资源管理器
    事务的参与者,如一个数据库实例,控制分支事务

TM: Transaction Manager, 事务管理器
    负责协调和管理事务,控制全局事务,协调各个RM 

1. XA: DTP模型定义TM和RM之间通过的接口规范。数据库提供的,基于2pc的借口协议
  1.1 TM向AP提供程序编程接口,AP通过TM提交及回滚事务
  1.2 TM交易中间件通过XA接口来通知RM数据库事务的开始,提交,结束,回滚等
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值