Acwing858.Prim算法求最小生成树

该文章描述了一个利用Prim算法在可能存在重边和自环、边权为负数的无向图中寻找最小生成树的问题。程序首先初始化距离数组为正无穷,然后通过迭代找到与已选节点集合最近的未选节点,更新最小生成树的权重和。如果在某次迭代中无法找到更近的节点,则说明最小生成树不存在。最后,输出最小生成树的权重总和或impossible表示不存在最小生成树。
摘要由CSDN通过智能技术生成

858.Prim算法求最小生成树

题目描述

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如

果最小生成树不存在则输出impossible。

给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=/V|,m=|E|。

第一行包含两个整数n和m。

输入格式

第一行包含两个整数n和m。

接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

数据范围

1 ≤ n ≤ 500,

1 ≤ m ≤ 10^5,

图中涉及边的边权的绝对值均不超过10000。

输入样式:

4 5
1 2 1
1 3 2 
1 4 3
2 3 2
3 4 4

输出样式:

6

代码:

#include<bits/stdc++.h>
using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n;              // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];         // 存储每个点是否已经在生成树中
 
 
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);    // 1、初始化dist为正无穷
 
    int res = 0; 
    for (int i = 0; i < n; i ++ )       // 2、n次迭代,代表第i个加入的边
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))   // 3、找到集合外(!st[j])距离集合最近的点
                t = j;
 
        if (i && dist[t] == INF) return INF;    // 如果不是第一条边且(当前距离集合最近的点,距离集合的距离是正无穷),所以不存在最小生成树
 
        if (i) res += dist[t];
        st[t] = true;
 
        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]); // 4、更新其他点到集合的距离
    }
 
    return res;
}

int main()
{
    scanf("%d%d", &m, &m);

    memset(g, 0x3f, sizeof g);

    while(m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = g[b][a] = min(g[a][b], c);
    }

    int t = prim();

    if(t == INF) puts("impossible");
    else puts("%d\n", t);

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值