AcWing 873.欧拉函数

该问题要求计算给定正整数的欧拉函数值,欧拉函数定义为与数互质的数的个数。通过容斥原理,可以将计算过程分解为质因数分解,然后利用公式N*(1-1/p1)*(1-1/p2)*...*(1-1/pk)进行计算。程序通过分解质因数并应用公式得出答案。
摘要由CSDN通过智能技术生成

AcWing 873.欧拉函数

题目描述

给定n个正整数αi,请你求出每个数的欧拉函数

欧拉函数定义

1~N中与N互质的数的个数被称为欧拉函数,记为Φ(N)。
互质是公约数只有1的两个整数,叫做互质整数。
eg:求Φ(6),和6只有公约数为1的数有1和5,一共两个数,所以Φ(6) = 2

p1 到 pk 是N的质因子
若在算数基本定理中,有
N = p 1 α 1 ∗ p 2 α 2 ∗ . . . ∗ p k α k N = p_1^{α1} * p_2^{α2} * ... * p_k^{αk} N=p1α1p2α2...pkαk

证明欧拉函数(使用容斥原理):
首先我们假设N的所有质因数是p1到pk,求1 ~N-1中与N互斥的数的个数s
1、从1 ~ N中去掉p1p2…pk的所有倍数
s = N − N p 1 − N p 2 − . . . − N p k s = N - \frac {N} {p_1} - \frac {N} {p_2} -...- \frac {N} {p_k} s=Np1Np2N...pkN
2、加上所有pi * pj的倍数
s = N − N p 1 − N p 2 − . . . − N p k + N p 1 p 2 + N p 1 p 3 + . . . + N p i p j s = N - \frac {N} {p_1} - \frac {N} {p_2} -...- \frac {N} {p_k} + \frac {N} {p_1 p_2} + \frac {N} {p_1 p_3} + ...+ \frac {N} {p_i p_j} s=Np1Np2N...pkN+p1p2N+p1p3N+...+pipjN
3、减去所有pi * pj * pk 的倍数
s = N − N p 1 − N p 2 − . . . − N p k + N p 1 p 2 + N p 1 p 3 + . . . + N p i p j − N p 1 p 2 p 3 − N p 1 p 2 p 4 − . . . − N p i p j p k s = N - \frac {N} {p_1} - \frac {N} {p_2} -...- \frac {N} {p_k} + \frac {N} {p_1 p_2} + \frac {N} {p_1 p_3} + ...+ \frac {N} {p_i p_j}- \frac {N} {p_1p_2p_3} - \frac {N} {p_1p_2p_4} -...- \frac {N} {p_ip_jp_k} s=Np1Np2N...pkN+p1p2N+p1p3N+...+pipjNp1p2p3Np1p2p4N...pipjpkN
4、以此类推…。
5、最后求出欧拉函数的核心公式(最重要)
Φ ( N ) = N ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ . . . ∗ ( 1 − 1 p k ) Φ(N) = N *(1-\frac {1} {p_1}) * (1-\frac {1} {p_2}) * ... *(1-\frac {1} {p_k}) Φ(N)=N(1p11)(1p21)...(1pk1)

输入格式

第一行包含整数n。

接下来n行,每行包含一个正整数αi

输出格式

输出共n行,每行输出一个正整数αi的欧拉函数。

数据范围

1 ≤ n ≤ 100,

1 ≤ αi ≤ 2 * 109

输入样式:

3
3
6
8

输出样式:

2
2
4

代码:

#include <bits/stdc++.h> 
using namespace std;
 
typedef long long ll;   // 数据范围较大记得用long long
const int N = 110;
 
int n;
 
int main()
{
    cin >> n;
    while(n--)
    {
        int cnt = 0;
        ll primes[N];
        int x;
        cin >> x;

        ll ans = x;

        // 先分解质因数
        for(int i = 2 ; i <= x / i ; i ++ )
        {
            if(x % i == 0)
            {
                ans = ans / i * (i - 1);    // ans = ans * (1 - 1 / x),需要化简,结果就是ans = ans / i * (i - 1)
                while(x % i == 0) x /= i;
            }
        }
        
        if(x > 1) ans = ans / x * (x - 1);  // 最后一个比较大的质因子x
 
         
        cout << ans << endl;
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值