Tensorflow-gpu、python、cuda10.0、cudnn版本对应关系及安装配置

本文详细介绍了Tensorflow-GPU、CUDA10.0和cudnn的版本对应关系,强调了不应安装CUDA10.1以避免与高版本tensorflow的兼容问题。内容包括tensorflow与keras版本的对应,CUDA的安装步骤,如须取消Visual Studio Integration的勾选,以及检查CUDA是否安装成功的验证方法。同时,提到了cudnn的安装路径及添加环境变量的必要性,确保GPU加速功能的正常使用。
部署运行你感兴趣的模型镜像

显卡驱动版本和CUDA版本的确认:

在这里插入图片描述
在这里插入图片描述
对于版本号大于1.13的tensorflow-gpu版本,如1.14、1.15和2.0,要安装CUDA10.0,不要安装最新的CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用

tensorflow和keras版本对应关系:
在这里插入图片描述

cuda安装:

安装cuda前必须安装vs2015或其他vs版本
在这里插入图片描述
在组件CUDA中将Visual Studio Intergration取消掉:
在这里插入图片描述

取消勾选GeForce Experience

如果电脑上本身就有Visual Studio Integration,要将这个取消勾选,避免冲突了

点开Driver comonents,Display Driver这一行,前面显示的是Cuda本身包含的驱动版本是411.31

如果你电脑目前安装的驱动版本号新于Cuda本身自带的驱动版本号,那一定要把这个勾去掉。否则会安装失败(相同的话,就不用去取勾了)
在这里插入图片描述
在这里插入图片描述
打开路径 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin ,查看nvcc.exe
有这个nvcc.exe就说明CUDA安装已成功
打开路径 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\lib64,查看有没有cuti64_101.dll
有这个cuti64_100.dll就说明CUPT1已成功

cudnn安装:打开 “C:\Program Files\NVIDIAGPU Computing Toolkit\CUDA” 目录,找到你安装的版本目录,打开,找到bin、include、lib目录,将cuDNN压缩包内对应目录下的文件分别复制到bin、include、lib目录。如果是新版Windows 10系统,可以直接复制三个目录到对应路径下,两处的目录会自动合并,不会出现目录级的覆盖,最多只会覆盖同名文件。如果是其他版本系统,为了以防万一,最好还是手动一一复制到对应路径下。

添加环境变量:
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\libx64

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64
CUDA_BIN_PATH = %CUDA_PATH%\bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64
在这里插入图片描述

测试:

python
import tensorflow as tf
print(tf.test.is_gpu_available())

出现True,则安装成功,可以使用gpu加速

C:\Program Files\NVIDIA Corporation\NVSMI
添加到path
cmd输入:nvidia-smi,如果出现类似如下信息,则表明CUDA安装成功。
在这里插入图片描述

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### TensorFlow PyTorchCUDAcuDNN 的兼容性分析 #### 兼容性概述 TensorFlow PyTorch 是当前最流行的两个深度学习框架,它们都依赖于 NVIDIA 提供的 CUDA cuDNN 库来实现 GPU 加速功能。不同版本TensorFlow PyTorch 对应不同的 CUDA cuDNN 版本需求。 对于 TensorFlow PyTorch 的具体兼容性情况,可以参考以下内容: - 推荐使用的 CUDA cuDNN 组合包括 CUDA11.2 + CUDNN8.1 或者 CUDA10.2 + CUDNN7.6.5[^1]。 - 在特定环境下,例如 Windows 系统下运行 TensorFlow 3.1 时,需注意其对应安装版本匹配关系[^2]。 #### Python 版本建议 在构建深度学习环境时,Python版本选择同样重要。已知 Anaconda3 建议版本为 5.20,而 TensorFlow PyTorchPython 3.7 不够友好,可能会引发一系列问题[^3]。因此,推荐使用更稳定的 Python 版本(如 Python 3.8 或更高版本),以减少潜在冲突。 #### 深度学习框架特性比较 PyTorch 被认为是 torch 的 Python 实现版本,由 Facebook 开源并专注于 GPU 加速的 DNN 编程。它具有动态计算图的特点,能够灵活调整计算流程[^4]。相比之下,TensorFlow 则提供静态动态图的支持,并拥有更为广泛的社区支持及工具链集成能力。 以下是基于上述信息整理的具体版本对照表: | **Framework** | **Version** | **CUDA Version** | **cuDNN Version** | |--------------|-------------|------------------|--------------------| | TensorFlow | >=2.9 | CUDA11.2 | CUDNN8.1 | | PyTorch | >=1.10 | CUDA11.2 | CUDNN8.1 | 此表格仅列举部分常见组合,实际部署前仍需查阅官方文档确认最新适配状态。 ```python import tensorflow as tf print(tf.__version__) # 输出当前 TensorFlow 版本号用于验证环境设置是否正确 ``` ```python import torch print(torch.version.cuda) # 查看当前 PyTorch 使用的 CUDA 版本 ``` #### 总结 综上所述,在搭建 TensorFlowPyTorch 的开发环境中,合理规划所选用的 CUDA cuDNN 版本至关重要。同时也要关注基础软件栈中的 Python 解释器版本一致性问题以免引入不必要的麻烦。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值