Tensorflow-gpu、python、cuda10.0、cudnn版本对应关系及安装配置

本文详细介绍了Tensorflow-GPU、CUDA10.0和cudnn的版本对应关系,强调了不应安装CUDA10.1以避免与高版本tensorflow的兼容问题。内容包括tensorflow与keras版本的对应,CUDA的安装步骤,如须取消Visual Studio Integration的勾选,以及检查CUDA是否安装成功的验证方法。同时,提到了cudnn的安装路径及添加环境变量的必要性,确保GPU加速功能的正常使用。
摘要由CSDN通过智能技术生成

显卡驱动版本和CUDA版本的确认:

在这里插入图片描述
在这里插入图片描述
对于版本号大于1.13的tensorflow-gpu版本,如1.14、1.15和2.0,要安装CUDA10.0,不要安装最新的CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用

tensorflow和keras版本对应关系:
在这里插入图片描述

cuda安装:

安装cuda前必须安装vs2015或其他vs版本
在这里插入图片描述
在组件CUDA中将Visual Studio Intergration取消掉:
在这里插入图片描述

对于安装 TensorFlow-GPU 1.14.0,您需要确保您的 Anaconda 环境已正确设置,并且已安装了正确版本CUDAcuDNN。 下面是安装步骤: 1. 首先,确保您已经成功安装了 Anaconda。如果还没有安装,请按照官方文档的指导进行安装。 2. 接下来,您需要安装 CUDA 10.0。您可以从 NVIDIA 官方网站下载适用于您的操作系统的 CUDA 安装程序,并按照指示进行安装。 3. 安装 CUDA 后,您需要安装 cuDNN 7.4。您需要先注册一个 NVIDIA 开发者账号,然后从 NVIDIA 开发者网站下载 cuDNN 安装包。根据您的操作系统和 CUDA 版本选择正确的版本,并根据 cuDNN 安装指南进行安装。 4. 安装CUDAcuDNN 后,打开 Anaconda Prompt(Windows)或终端(macOS/Linux)。 5. 创建一个新的环境并激活它: ``` conda create -n tf_gpu_env python=3.7 conda activate tf_gpu_env ``` 6. 在新环境中安装 TensorFlow-GPU 1.14.0: ``` pip install tensorflow-gpu==1.14.0 ``` 7. 安装完成后,您可以通过运行以下代码来验证 TensorFlow 是否正确安装并使用 GPU: ```python import tensorflow as tf print(tf.test.is_gpu_available()) ``` 如果输出为 True,则表示 TensorFlow 正确安装并且可以使用 GPU。 请注意,安装 TensorFlow-GPU 需要确保您的系统满足 CUDAcuDNN 的要求,并且您的 GPU 支持 CUDA。如果您遇到任何问题,请参考 TensorFlow 官方文档或在相关论坛上寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值