显卡驱动版本和CUDA版本的确认:


对于版本号大于1.13的tensorflow-gpu版本,如1.14、1.15和2.0,要安装CUDA10.0,不要安装最新的CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用
tensorflow和keras版本对应关系:

cuda安装:
安装cuda前必须安装vs2015或其他vs版本

在组件CUDA中将Visual Studio Intergration取消掉:

取消勾选GeForce Experience
如果电脑上本身就有Visual Studio Integration,要将这个取消勾选,避免冲突了
点开Driver comonents,Display Driver这一行,前面显示的是Cuda本身包含的驱动版本是411.31
如果你电脑目前安装的驱动版本号新于Cuda本身自带的驱动版本号,那一定要把这个勾去掉。否则会安装失败(相同的话,就不用去取勾了)


打开路径 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin ,查看nvcc.exe
有这个nvcc.exe就说明CUDA安装已成功
打开路径 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\lib64,查看有没有cuti64_101.dll
有这个cuti64_100.dll就说明CUPT1已成功
cudnn安装:打开 “C:\Program Files\NVIDIAGPU Computing Toolkit\CUDA” 目录,找到你安装的版本目录,打开,找到bin、include、lib目录,将cuDNN压缩包内对应目录下的文件分别复制到bin、include、lib目录。如果是新版Windows 10系统,可以直接复制三个目录到对应路径下,两处的目录会自动合并,不会出现目录级的覆盖,最多只会覆盖同名文件。如果是其他版本系统,为了以防万一,最好还是手动一一复制到对应路径下。
添加环境变量:
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include
C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\libx64
CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64
CUDA_BIN_PATH = %CUDA_PATH%\bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

测试:
python
import tensorflow as tf
print(tf.test.is_gpu_available())
出现True,则安装成功,可以使用gpu加速
把C:\Program Files\NVIDIA Corporation\NVSMI
添加到path
cmd输入:nvidia-smi,如果出现类似如下信息,则表明CUDA安装成功。

本文详细介绍了Tensorflow-GPU、CUDA10.0和cudnn的版本对应关系,强调了不应安装CUDA10.1以避免与高版本tensorflow的兼容问题。内容包括tensorflow与keras版本的对应,CUDA的安装步骤,如须取消Visual Studio Integration的勾选,以及检查CUDA是否安装成功的验证方法。同时,提到了cudnn的安装路径及添加环境变量的必要性,确保GPU加速功能的正常使用。
4935

被折叠的 条评论
为什么被折叠?



