Tensorflow-gpu、python、cuda10.0、cudnn版本对应关系及安装配置

本文详细介绍了Tensorflow-GPU、CUDA10.0和cudnn的版本对应关系,强调了不应安装CUDA10.1以避免与高版本tensorflow的兼容问题。内容包括tensorflow与keras版本的对应,CUDA的安装步骤,如须取消Visual Studio Integration的勾选,以及检查CUDA是否安装成功的验证方法。同时,提到了cudnn的安装路径及添加环境变量的必要性,确保GPU加速功能的正常使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

显卡驱动版本和CUDA版本的确认:

在这里插入图片描述
在这里插入图片描述
对于版本号大于1.13的tensorflow-gpu版本,如1.14、1.15和2.0,要安装CUDA10.0,不要安装最新的CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用

tensorflow和keras版本对应关系:
在这里插入图片描述

cuda安装:

安装cuda前必须安装vs2015或其他vs版本
在这里插入图片描述
在组件CUDA中将Visual Studio Intergration取消掉:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值