利用MATlab实现简单的曲线图片识别

问题描述:
已知图片中的曲线,利用Matlab编程实现提取曲线中点的数据。
输入:图片文件
所用到的主要函数:rgb2gray
图a1
图a2
代码是参考网上教程
如下:

clear all;clc;close all;

%% 图1数据读取
im2 = imread('a1.png');im2 =rgb2gray(im2);

Data_Len1=size(im2,2);
Data_Len=Data_Len1;
Data1 =zeros(1,Data_Len);

imtmp = im2;
imtmp = imtmp(1:end-1,:)+imtmp(2:end,:);
[~,imtmp_idx] =min(imtmp(:,1:Data_Len));
Data1(1,:) = (size(imtmp,1)-imtmp_idx)/ size(imtmp,1)*100;
Data1=Data1.';

输出点的数据在Excel中画图如下:
a1结果
a2结果
缺点:
1.当图片中曲线有背景时或坐标轴时,不能处理。
2.还原原始数据时,需要知道横纵坐标的范围。

在Python,处理图像尤其是手绘曲线识别通常涉及到数字图像处理、计算机视觉以及机器学习的技术。一种常见的方法是结合OpenCV库(用于图像预处理)和深度学习库如TensorFlow或PyTorch(用于模型训练和识别)。 首先,你需要对图像进行预处理,包括灰度化、二值化或边缘检测,以便提取关键特征。如果手绘曲线是由连续像素点构成,可以尝试通过轮廓检测算法(如Canny边检测)找到可能的线条。 接着,利用机器学习模型进行识别。比如,你可以构建一个卷积神经网络(CNN),对其进行训练,让它学习如何区分手画曲线和其他非曲线图案。训练数据集需要包含手绘曲线的各种形态作为正样本,以及其他背景或非曲线图像作为负样本。 训练过程通常涉及将图像转换成合适的输入格式(如一维向量或二维网格),定义损失函数,选择优化器,并迭代调整模型参数直到达到满意的性能。 以下是一个简化版的流程概述: 1. 数据收集与预处理:获取手绘曲线图并转化为适合模型训练的格式。 2. 模型构建:使用Keras或PyTorch搭建一个简单的CNN结构。 3. 训练模型:加载数据到模型,设置训练循环,进行前向传播、反向传播和更新权重。 4. 测试与评估:用新数据测试模型的准确性和泛化能力。 5. 应用识别:实际应用时,对新的手绘曲线图像进行同样的预处理步骤,然后通过模型预测其是否为手绘曲线
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值