用sklearn包实现简单的线性回归

from numpy.linalg import inv
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model

#读取数据
dataset=pd.read_excel("data.xlsx")
temp=dataset.iloc[:,1:3]
#print(temp)
#print(type(temp))

x=temp.iloc[:,1:3]
#print(x)
y=dataset.iloc[:,1].values.reshape(64,1)
#print(y)
clf=linear_model.LinearRegression()
clf.fit(x,y)
plt.scatter(x,y,c = 'blue',marker = 'o')
x1=[[3],[4],[5.4],[5.6],[6],[6.4],[6.7],[6.8],[7],[7.5],[7.7],[10],[13],[17.9],[23],[25.5],[28.5],[33],[35],[40],[44],[47],[50]]
res1=clf.predict(x1)
plt.plot(x1,res1,'r-')

运行程序结果:
在这里插入图片描述
部分数据如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值