547. 省份数量
有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。
示例 1:
输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2
示例 2:
输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3
提示:
1 <= n <= 200
n == isConnected.length
n == isConnected[i].length
isConnected[i][j] 为 1 或 0
isConnected[i][i] == 1
isConnected[i][j] == isConnected[j][i]
思路:(DFS)
- 可以把 n 个城市和它们之间的相连关系看成图,城市是图中的节点,相连关系是图中的边,给定的矩阵 isConnected 即为图的邻接矩阵,省份即为图中的连通分量。
- 计算省份总数,等价于计算图中的连通分量数,可以通过深度优先搜索或广度优先搜索实现,也可以通过并查集实现。本文使用深度优先搜索
1、遍历所有城市,对于每个城市,如果该城市尚未被访问过,则从该城市开始深度优先搜索,通过矩阵 isConnected 得到与该城市直接相连的城市有哪些,这些城市和该城市属于同一个连通分量,
2、然后对这些城市继续深度优先搜索,直到同一个连通分量的所有城市都被访问到,即可得到一个省份。
3、遍历完全部城市以后,即可得到连通分量的总数,即省份的总数。
代码:(Java)
public class dfs_num_province {
public static void main(String[] args) {
// TODO 自动生成的方法存根
// int [][] isConnected = {
// {1, 1, 0},
// {1, 1, 0},
// {0, 0, 1}
// };
int [][] isConnected = {
{1, 0, 0},
{0, 1, 0},
{0, 0, 1}
};
int num = findCircleNum(isConnected);
System.out.println(num);
}
private static int n;
public static int findCircleNum(int[][] isConnected) {
n = isConnected.length;
int circleNum = 0;
boolean [] hasVisited = new boolean[n];
for(int i = 0; i < n; i++) {
if(!hasVisited[i]) {
circleNum++;
dfs(isConnected, i , hasVisited);
}
}
return circleNum;
}
private static void dfs(int[][] isConnected, int i, boolean[] hasVisited) {
// TODO 自动生成的方法存根
hasVisited[i] = true;
for(int j = 0; j < n; j++) {
if(isConnected[i][j] == 1 && !hasVisited[j]){
dfs(isConnected, j , hasVisited);
}
}
}
}
输出:
复杂度分析:
-
时间复杂度: O ( n 2 ) O(n^2) O(n2),其中 n 是城市的数量。需要遍历矩阵 n 中的每个元素。
-
空间复杂度: O ( n ) O(n) O(n),其中 n 是城市的数量。需要使用数组 hasVisited 记录每个城市是否被访问过,数组长度是 n,递归调用栈的深度不会超过 n。
注:仅供学习参考
来源:力扣