47. 全排列 II

79 篇文章 3 订阅

关上过去和未来的铁门,活在“今天”这个舱室中。                                 ——《人性的优点》

47. 全排列 II

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

1 <= nums.length <= 8
-10 <= nums[i] <= 10

思路:(回溯)

此题是 46. 全排列 的进阶

  • 但是这道题有了一点改变,那么就是列表里面有重复数字,全排列的结果,相同答案只算一种,那么我们就要考虑重复。
  • 当然因为题目没有说该队列有序,所以要先排序。

判断的时候加上:

if(i > 0 && nums[i] == nums[i-1] && hasVisited[i-1] == false) {
	continue;
}

其中最为关键的是 hasVisited[i-1] == false ,用来去重,就是限制一下两个相邻的重复的访问顺序

举个栗子 :

对于两个相同的数 1 1 ,我们将其命名为 a b,a 表示第一个 1 ,b 表示第二个 1

  • 如果不去重得的话,会有两种重复排列 a b,b a ,我们只需取其中任意一种排列即可;
  • 为了达到目的,限制一下 a ,b 的访问顺序即可;
  • 比如 我们只取 a b 这个排列的话,只有当 nums[i - 1] 访问后,我们才去访问 nums[i] ,
  • 也就是说 如果 hasVisited[i-1] == false 的话, 则 continue 跳过。
举另个栗子 :

去重最为关键的代码为:

if(i > 0 && nums[i] == nums[i-1] && hasVisited[i-1] == false) {
	continue;
}

但如果改成 hasVisited[i-1] == true ,也是正确的, 去重代码如下:

if(i > 0 && nums[i] == nums[i-1] && hasVisited[i-1] == true) {
	continue;
}

这是为什么呢?

  • hasVisited[i-1] == false ,是对树层中前一位去重;
  • hasVisited[i-1] == true ,是对树枝前一位去重;

(借用一下别人的图进行理解):

如果 是三个相同的数 1 1 1

树层上去重(hasVisited[i-1] == false),树形结构如下:
在这里插入图片描述
树枝上去重(hasVisited[i-1] == true),树形结构如下:
在这里插入图片描述
观察上图可以得出:

  • 树层上对前一位去重非常彻底,效率很高;
  • 树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索。

代码:(Java)

import java.util.ArrayList;
import java.util.List;

public class all_permute {

	public static void main(String[] args) {
		// TODO 自动生成的方法存根
		int [] nums = {1, 1, 2};
		System.out.println(permuteUnique(nums));
	}
	public static List<List<Integer>> permuteUnique(int[] nums) {
		List<List<Integer>> permutes = new ArrayList<>();
		List<Integer> permute = new ArrayList<>();
		if(nums == null || nums.length == 0) {
			return permutes;
		}
		int flag = 0;//标记
		for(int i = 1; i < nums.length ; i++) {//冒泡排序
			for(int j = 0; j < nums.length - i; j++) {
				if(nums[j] > nums[j+1]) {
					int temp = nums[j];
					nums[j] = nums[j+1];
					nums[j+1] = temp;
					flag++;
				}
			}
			if(flag == 0)
				break;
		}
		boolean [] hasVisited = new boolean[nums.length];
		backTracking(nums, hasVisited, permute, permutes);
		return permutes;
	}
	private static void backTracking(int[] nums, boolean[] hasVisited, List<Integer> permute, List<List<Integer>> permutes) {
		// TODO 自动生成的方法存根
		if(permute.size() == hasVisited.length) {
			permutes.add(new ArrayList<>(permute));
			return;
		}
		for(int i = 0; i < nums.length; i++) {
			if(hasVisited[i]) {
				continue;
			}
			if(i > 0 && nums[i] == nums[i-1] && hasVisited[i-1] == false) {
				continue;
			}
			hasVisited[i] = true;
			permute.add(nums[i]);
			backTracking(nums, hasVisited, permute, permutes);
			permute.remove(permute.size() - 1);
			hasVisited[i] = false;
		}
	}
}
运行结果:

在这里插入图片描述

复杂度分析:
  • 时间复杂度: O ( n × n ! ) O(n×n!) O(n×n!),其中 n 为序列的长度。

    • 算法的复杂度首先受 backTracking 的调用次数制约,backTracking 的调用次数为 ∑ k = 1 n P ( n , k ) \sum_{k=1}^{n} P(n, k) k=1nP(n,k)次,其中 P ( n , k ) = n ! ( n − k ) ! = n ( n − 1 ) … ( n − k + 1 ) P(n, k)=\frac{n !}{(n-k) !}=n(n-1) \ldots(n-k+1) P(n,k)=(nk)!n!=n(n1)(nk+1),该式被称作 n 的 k - 排列,或者部分排列

    • ∑ k = 1 n P ( n , k ) = n ! + n ! 1 ! + n ! 2 ! + n ! 3 ! + … + n ! ( n − 1 ) ! < 2 n ! + n ! 2 + n ! 2 2 + n ! 2 n 2 < 3 n ! \sum_{k=1}^{n} P(n, k)=n !+\frac{n !}{1 !}+\frac{n !}{2 !}+\frac{n !}{3 !}+\ldots+\frac{n !}{(n-1) !}<2 n !+\frac{n !}{2}+\frac{n !}{2^{2}}+\frac{n !}{2^{n} 2}<3 n ! k=1nP(n,k)=n!+1!n!+2!n!+3!n!++(n1)!n!<2n!+2n!+22n!+2n2n!<3n!
      , 这说明 backTracking 的调用次数是 O ( n ! ) O(n!) O(n!)的。

    • 而对于 backTracking调用的每个叶结点(最坏情况下没有重复数字共 n ! n! n!个),我们需要将当前答案使用 O ( n ) O(n) O(n)的时间复制到答案数组中,相乘得时间复杂度为 O ( n × n ! ) O(n×n!) O(n×n!)

    • 因此时间复杂度为 O ( n × n ! ) O(n×n!) O(n×n!)

  • 空间复杂度: O ( n ) O(n) O(n)。我们需要 O ( n ) O(n) O(n)的标记数组,同时在递归的时候栈深度会达到 O ( n ) O(n) O(n),因此总空间复杂度为 O ( n + n ) = O ( 2 n ) = O ( n ) O(n+n)=O(2n)=O(n) O(n+n)=O(2n)=O(n)

注:仅供学习参考!

题目来源:力扣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的懒虫

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值