( “树” 之 BST) 108. 将有序数组转换为二叉搜索树 ——【Leetcode每日一题】

108. 将有序数组转换为二叉搜索树

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。

高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。

示例 1:
在这里插入图片描述

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
在这里插入图片描述

示例 2:

在这里插入图片描述

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

  • 1 < = n u m s . l e n g t h < = 1 0 4 1 <= nums.length <= 10^4 1<=nums.length<=104
  • − 1 0 4 < = n u m s [ i ] < = 1 0 4 -10^4 <= nums[i] <= 10^4 104<=nums[i]<=104
  • nums严格递增 顺序排列

思路:递归

我们可以构造一个二叉搜索树(BST):根节点大于等于左子树所有节点,小于等于右子树所有节点。

所以我们让根节点等于该数组的中位数,该中位数左边就是左子树,右边就是右子树,分别在递归处理左右子树,既可得到高度平衡二叉树。

  • 这里我们要传入需要处理的数组的区间。
  • 返回该相对区间的中位数生成的节点。

代码:(Java、C++)

Java

class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        TreeNode root = toBST(nums, 0, nums.length - 1);
        return root;
    }
    public TreeNode toBST(int[] nums, int be, int ed){
        if(be > ed) return null;
        TreeNode root = new TreeNode(nums[be + (ed - be) / 2]);
        root.left = toBST(nums, be, be + (ed - be) / 2 - 1);
        root.right = toBST(nums, be + (ed - be) / 2 + 1, ed);
        return root;
    }
}

C++

class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        TreeNode* root = toBST(nums, 0, nums.size() - 1);
        return root;
    }
    TreeNode* toBST(vector<int>& nums, int be, int ed){
        if(be > ed) return nullptr;
        TreeNode* root = new TreeNode(nums[be + (ed - be) / 2]);
        root->left = toBST(nums, be, be + (ed - be) / 2 - 1);
        root->right = toBST(nums, be + (ed - be) / 2 + 1, ed);
        return root;
    }
};
运行结果:

在这里插入图片描述

复杂度分析:
  • 时间复杂度 O ( n ) O(n) O(n),其中 n 是数组的长度。每个数字只访问一次。
  • 空间复杂度 O ( l o g ⁡ n ) O(log⁡n) O(logn),其中n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是 O ( l o g ⁡ n ) O(log⁡n) O(logn)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我 leetCode专栏,每日更新!

注: 如有不足,欢迎指正!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的懒虫

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值